Skip to main content
Log in

Characterization of σ-hole interactions in 1:1 and 1:2 complexes of YOF2X (X = F, Cl, Br, I; Y = P, As) with ammonia: competition between halogen and pnicogen bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations at the MP2/aug-cc-pVTZ level of theory are performed to examine 1:1 and 1:2 complexes of YOF2X (X = F, Cl, Br, I; Y = P, As) with ammonia. The YOF2X:NH3 complexes are formed through the interaction of the lone pair of the ammonia with the σ-hole region associated with the X or Y atom of YOF2X molecule. The calculated interaction energies of halogen-bonded complexes are between −1.06 kcal/mol in the POF3···NH3 and −6.21 kcal/mol in the AsOF2I···NH3 one. For a given Y atom, the largest pnicogen bond interaction energy is found for the YOF3, while the smallest for the YOF2I one. Almost a strong linear relationship is evident between the interaction energies and the magnitudes of the positive electrostatic potentials on the X and Y atoms. The results indicate that the interaction energies of halogen and pnicogen bonds in the ternary H3N:YOF2X:NH3 systems are less negative relative to the respective binary systems. The interaction energy of Y···N bond is decreased by 1–22 %, whereas that of X···N bond by about 5–61 %. That is, both Y···N and X···N interactions exhibit anticooperativity or diminutive effects in the ternary complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical prospective. Oxford University Press, Oxford

    Google Scholar 

  2. Chudzinski MG, McClary CA, Taylor MS (2011) Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. J Am Chem Soc 133:10559–10567

    Article  CAS  Google Scholar 

  3. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  4. Parker AJ, Stewart J, Donald KJ, Parish CA (2012) Halogen bonding in DNA base pairs. J Am Chem Soc 134:5165–5172

    Article  CAS  Google Scholar 

  5. Esrafili MD (2013) A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J Mol Model 19:1417–1427

    Article  CAS  Google Scholar 

  6. Metrangolo P, Resnati G, Pilati T, Biella S (2008) In: Metrangolo P, Resnati G (eds) Halogen bonding fundamentals and applications. Springer, Berlin

    Chapter  Google Scholar 

  7. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed 50:314–318

    Article  CAS  Google Scholar 

  8. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  10. Shields ZP, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonds. Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  11. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  12. Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F–Cl and Cl2. Theor Chem Acc 131:1114

    Article  Google Scholar 

  13. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  16. Politzer P, Murray JS, Clark T (2015) σ-Hole bonding: a physical interpretation. Top Curr Chem 358:19–42

    Article  CAS  Google Scholar 

  17. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen···halogen synthons: crystallographic and theoretical studies. Chem Eur J 12:8952–8960

    Article  CAS  Google Scholar 

  18. Tsuzuki S, Wakisaka A, Ono T, Sonoda T (2012) Origin of the attraction and directionality of the halogen bonds of the complexes of C6F5X and C6H5X (X = I, Br, Cl and F) with Ppyridine. Chem Eur J 18:951–960

    Article  CAS  Google Scholar 

  19. Lu Y, Zou J, Wang Y, Jiang Y, Yu Q (2007) Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A 111:10781–10788

    Article  CAS  Google Scholar 

  20. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  21. Esrafili MD, Vakili M, Solimannejad M (2014) Characterization of halogen···halogen interactions in crystalline dihalomethane compounds (CH2Cl2, CH2Br2 and CH2I2): a theoretical study. J Mol Model 20:2102

    Article  Google Scholar 

  22. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  23. Esrafili MD, Fatehi P, Solimannejad M (2014) Mutual interplay between pnicogen bond and dihydrogen bond in HMH···HCN···PH2X complexes (M = Be, Mg, Zn; X = H, F, Cl). Comput Theor Chem 1034:1–6

    Article  CAS  Google Scholar 

  24. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  25. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  26. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  27. Scheiner S (2011) Effects of substituents upon the P···N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209

    Article  CAS  Google Scholar 

  28. Scheiner S (2011) Can two trivalent N atoms engage in a direct N···N noncovalent interaction? Chem Phys Lett 514:32–35

    Article  CAS  Google Scholar 

  29. Adhikari U, Scheiner S (2012) Substituent effects on Cl···N, S···N and P···N noncovalent bonds. J Phys Chem A 116:3487–3497

    Article  CAS  Google Scholar 

  30. Adhikari U, Scheiner S (2012) Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–35

    Article  CAS  Google Scholar 

  31. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731

    Article  Google Scholar 

  32. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187

    Article  Google Scholar 

  33. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Interplay of F–H…F hydrogen bonds and P…N pnicogen bonds. J Phys Chem A 116:9205–9213

    Article  Google Scholar 

  34. Grabowski SJ, Alkorta I, Elguero J (2013) Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction. J Phys Chem A 117:3243–3251

    Article  CAS  Google Scholar 

  35. Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen bases. J Phys Chem A 117:10497–10503

    Article  CAS  Google Scholar 

  36. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2013) Exploring (NH2F)2, H2FP:NFH2, and (PH2F)2 potential surfaces: hydrogen bonds or pnicogen bonds? J Phys Chem A 117:183–191

    Article  CAS  Google Scholar 

  37. Esrafili M, Mohammadirad N (2015) An ab initio study on tunability of σ-hole interactions in XHS:PH2Y and XH2P:SHY complexes (X = F, Cl, Br; Y = H, OH, OCH3, CH3, C2H5, and NH2). J Mol Model 21:176

    Article  Google Scholar 

  38. Li Q, Zhuo H, Yang X, Cheng J, Li W, Loffredo RE (2014) Cooperative and diminutive effects of pnicogen bonds and cation–π interactions. ChemPhysChem 15:500–506

    Article  CAS  Google Scholar 

  39. Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2015) Mutual influence between anion–π and pnicogen bond interactions: the enhancement of P···N and P···O interactions by an anion–π bond. J Mol Graph Model 57(2015):99–105

    Article  CAS  Google Scholar 

  40. Vickaryous WJ, Healy ER, Berryman OB, Johnson DW (2005) Synthesis and characterization of two isomeric, self-assembled arsenic − thiolate macrocycles. Inorg Chem 44:9247–9252

    Article  CAS  Google Scholar 

  41. Saparov B, He H, Zhang X, Greene R, Bobev S (2010) Synthesis, crystallographic and theoretical studies of the new Zintl phases Ba2Cd2Pn3 (Pn = As, Sb), and the solid solutions (Ba1−xSrx)2Cd2Sb3 and Ba2Cd2(Sb1−x Asx)3. Dalton Trans 39:1063–1070

    Article  CAS  Google Scholar 

  42. Ziółkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: ab initio and “atoms in molecules” analyses. J Phys Chem A 110:6514–6521

    Article  Google Scholar 

  43. Grabowski SJ, Bilewicz E (2006) Cooperativity halogen bonding effect–ab initio calculations on H2CO···(ClF)n complexes. Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  44. Liu X, Cheng J, Li Q, Li W (2013) Competition of hydrogen, halogen, and pnicogen bonds in the complexes of HArF with XH2P (X = F, Cl, and Br). Spectrochim Acta A 101:172–177

    Article  CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  46. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  47. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  48. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  49. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  50. Hellwege KH, Hellwege AM (1976) Landolt-Bornstein: Group II: atomic and molecular physics volume 7: structure data of free polyatomic molecules. Springer, Berlin

  51. Herzberg G (1966) Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand, New York

    Google Scholar 

  52. Clark T, Murray JS, Politzer P (2013) Role of polarization in halogen bonds. Aust J Chem 67:451–456

    Article  Google Scholar 

  53. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  54. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) Polarization-induced σ-holes and hydrogen bonding. J Mol Model 18:2461–2469

    Article  CAS  Google Scholar 

  55. Clark T, Politzer P, Murray JS (2015) Correct electrostatic treatment of noncovalent interactions: the importance of polarization. WIREs Comput Mol Sci 5:169

    Article  CAS  Google Scholar 

  56. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

  57. Grabowski SJ (2013) Cooperativity of hydrogen and halogen bond interactions. Theor Chem Acc 132:1347

    Article  Google Scholar 

  58. Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2014) A theoretical evidence for mutual influence between S···N(C) and hydrogen/lithium/halogen bonds: competition and interplay between p-hole and r-hole interactions. Struct Chem 25:1197–1205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 673 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Mohammadirad, N. Characterization of σ-hole interactions in 1:1 and 1:2 complexes of YOF2X (X = F, Cl, Br, I; Y = P, As) with ammonia: competition between halogen and pnicogen bonds. Struct Chem 27, 939–946 (2016). https://doi.org/10.1007/s11224-015-0677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0677-6

Keywords

Navigation