Skip to main content
Log in

Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We describe a procedure for performing quantitative analyses of fields f(r) on molecular surfaces, including statistical quantities and locating and evaluating their local extrema. Our approach avoids the need for explicit mathematical representation of the surface and can be implemented easily in existing graphical software, as it is based on the very popular representation of a surface as collection of polygons. We discuss applications involving the volumes, surface areas and molecular surface electrostatic potentials, and local ionization energies of a group of 11 molecules.

Calculated electrostatic potential (left) and average local ionization energy (right) on the molecular surface of Tetryl. Yellow and black circles indicate the positions of the local minima and maxima, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laidig KE, Bader RFW (1990) J Chem Phys 93:7213–7224

    Article  CAS  Google Scholar 

  2. Brinck T, Murray JS, Politzer P (1993) J Chem Phys 98:4305–4306

    Article  CAS  Google Scholar 

  3. Jin P, Murray JS, Politzer P (2006) Int J Quantum Chem 106:2347–2355, and references therein

    Article  CAS  Google Scholar 

  4. Murray JS, Brinck T, Politzer P (1996) Chem Phys 204:289–299

    Article  CAS  Google Scholar 

  5. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879

    Article  CAS  Google Scholar 

  6. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) J Hazard Mat 141:280–288

    Article  CAS  Google Scholar 

  7. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  8. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2009) J Mol Model, doi:10.1007/s00894-009-0587-x

  9. Lee B, Richards FM (1971) J Mol Biol 55:379–400

    Article  CAS  Google Scholar 

  10. Weinter PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Proc Natl Acad Sci USA 79:3754–3758

    Article  Google Scholar 

  11. Connolly ML (1983) Science 221:709–713

    Article  CAS  Google Scholar 

  12. Francl MM, Hout RF Jr, Hehre WJ (1984) J Am Chem Soc 106:563–570

    Article  CAS  Google Scholar 

  13. Arteca GA, Jammal VB, Mezey PG, Yadov JS, Hermsmeier MA, Gund TM (1988) J Mol Graph 6:45–53

    Article  CAS  Google Scholar 

  14. Dunitz JD, Filippini G, Gavezzotti A (2000) Tetrahedron 56:6595–6601

    Article  CAS  Google Scholar 

  15. Bondi A (1964) J Phys Chem 64:441–451

    Article  Google Scholar 

  16. Brickmann J, Exner T, Keil M, Marhöfer R, Moeckel G (1998) In: Schleyer PvR (ed) Encylopedia of computational chemistry, vol 3. Wiley, New York, pp 1678–1693

    Google Scholar 

  17. Connolly ML (1998) In: Schleyer PvR (ed) Encylopedia of computational chemistry, vol 3. Wiley, New York, pp 1698–1703

    Google Scholar 

  18. Bader RFW, Henneker WH, Cade PE (1967) J Chem Phys 46:3341–3363

    Article  CAS  Google Scholar 

  19. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  20. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  21. Murray JS, Brinck T, Grice ME, Politzer P (1992) J Mol Struct THEOCHEM 256:29–45

    Article  Google Scholar 

  22. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS (2009) Croatica Chim Acta 82:267–275

    Google Scholar 

  24. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  25. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  26. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  27. Koopmans TA (1934) Physica 1:104–113

    Article  Google Scholar 

  28. Politzer P, Abu-Awwad F, Murray JS (1998) Int J Quantum Chem 69:607–613

    Article  CAS  Google Scholar 

  29. Bulat FA, Levy M, Politzer P (2009) J Phys Chem A 113:1384–1389

    Article  CAS  Google Scholar 

  30. Toro-Labbé A, Jaque P, Murray JS, Politzer P (2005) Chem Phys Lett 407:143–146

    Article  Google Scholar 

  31. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  32. Feynman RP (1939) Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  33. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  34. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  35. Sjoberg P, Brinck T (1991); Brinck T (1995) HardSurf program

  36. Hagelin H, Brinck T, Berthelot M, Murray JS, Politzer P (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  37. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theor Comput 5:155–163

    Article  CAS  Google Scholar 

  38. Murray JS, Brinck T, Lane P, Paulsen K, Politzer P (1994) J Mol Struct THEOCHEM 307:55–64

    Article  Google Scholar 

  39. Politzer P, Murray JS (1998) J Mol Struct THEOCHEM 425:107–114

    Article  Google Scholar 

  40. Murray JS, Politzer P (1998) In: Schleyer PvR (ed) Encyclopedia of computational chemistry, vol 2. Wiley, New York, pp 912–920

  41. Politzer P, Murray JS (2001) Fluid Phase Equil 185:129–137

    Article  CAS  Google Scholar 

  42. Politzer P, Murray JS (2007) In: Toro-Labbé A (ed) Chemical Reactivity, Elsevier, Amsterdam, pp 119–137

  43. Politzer P, Murray JS, Bulat FA (2010) J Mol Model. doi:10.1007/s00894-010-0709-5

  44. Lorensen WE, Cline HE (1987) SIGGRAPH 163–169

  45. Payne BA, Toga AW (1990) IEEE Comput Graph Appl 10:33–41

    Article  Google Scholar 

  46. Chan SL, Purisima EO (1998) J Comput Chem 19:1268–1277

    Article  CAS  Google Scholar 

  47. Meyer R, Köhler J, Hornburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  48. Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  49. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879

    Article  CAS  Google Scholar 

  50. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  51. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  52. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  53. Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479

    Article  Google Scholar 

  54. Auffinger P, Hays FA, Westhof E, Shing Ho P, Van Holde KE (2004) Proc Nat Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  55. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  56. Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.S.M. and P.P. appreciate the support of the Defense Threat Reduction Agency, Contract No. HDTRA1-07-1-0002, Project Officer Dr. William Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. Bulat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulat, F.A., Toro-Labbé, A., Brinck, T. et al. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16, 1679–1691 (2010). https://doi.org/10.1007/s00894-010-0692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0692-x

Keywords

Navigation