Skip to main content
Log in

Exploring σ-hole bonding in XH3Si···HMY (X=H, F, CN; M=Be, Mg; Y=H, F, CH3) complexes: a “tetrel-hydride” interaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, a σ-hole interaction is predicted theoretically in XH3Si···HMY complexes, where X=H, F, CN; M=Be, Mg and Y=H, F, CH3. The properties of this interaction, termed “tetrel-hydride” interaction, are investigated in terms of geometric, interaction energies, and electronic features of the complexes. The geometry of these complexes is obtained using the second-order Møller–Plesset perturbation theory (MP2) with aug-cc-pVTZ basis set. For each XH3Si···HMY complex, a tetrel-hydride bond is formed between the negatively charged H atom of HMY molecule and the positively charged Si atom of XH3Si molecule. The CCSD(T)/aug-cc-pVTZ interaction energies of this type of σ-hole bonding range from −0.6 to −3.8 kcal mol-1. The stability of XH3Si···HMY complexes is attributed mainly to electrostatic and correlation effects. The nature of tetrel-hydride interaction is analyzed with atoms in molecules (AIM) and natural bond orbital (NBO) theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  2. Kabeláč M, Hobza P (2007) Hydration and stability of nucleic acid bases and base pairs. Phys Chem Chem Phys 9:903–917

    Article  Google Scholar 

  3. Esrafili MD (2012) Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: an ab initio, SAPT and QTAIM study. J Mol Model 18:2003–2011

  4. Buckingham AD, Del Bene JE, McDowell SAC (2008) The hydrogen bond. Chem Phys Lett 463:1–10

    Article  CAS  Google Scholar 

  5. Berka K, Laskowski R, Riley KE, Hobza P, Vondrášek J (2009) Representative amino acid side chain interactions in proteins. a comparison of highly accurate correlated ab initio quantum chemical and empirical potential procedures. J Chem Theory Comput 5:982–992

    Article  CAS  Google Scholar 

  6. Fried SD, Bagchi S, Boxer SG (2013) Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes. J Am Chem Soc 135:11181–11192

    Article  CAS  Google Scholar 

  7. Esrafili MD, Juyban P (2014) CNXeCl and CNXeBr species as halogen bond donors: a quantum chemical study on the structure, properties, and nature of halogen···nitrogen interactions. J Mol Model 20:2203

    Article  Google Scholar 

  8. Ueda K, Oguni M, Asaji T (2014) Halogen bond as controlling the crystal structure of 4-amino-3,5-dihalogenobenzoic acid and its effect on the positional ordering/disordering of acid protons. Cryst Growth Des 14:6189–6196

    Article  CAS  Google Scholar 

  9. Wang C, Danovich D, Mo Y, Shaik S (2014) On the nature of the halogen bond. J Chem Theory Comput 10:3726–3737

    Article  CAS  Google Scholar 

  10. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695

    Article  CAS  Google Scholar 

  11. Forni A, Pieraccini S, Rendine S, Sironi M (2014) Halogen bonds with benzene: an assessment of DFT functionals. J Comput Chem 35:386–394

  12. Robinson SW, Mustoe CL, White NG, Brown A, Thompson AL, Kennepohl P, Beer PD (2015) Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition. J Am Chem Soc 137:499–507

    Article  CAS  Google Scholar 

  13. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  14. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  16. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  17. Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  18. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  19. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  20. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F–Cl and Cl2. Theor Chem Acc 131:1114

    Article  Google Scholar 

  22. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  24. Murray JS, Lane P, Politzer P (2013) Expansion of the σ-hole concept. J Mol Model 15:723–729

    Article  Google Scholar 

  25. Wang WZ, Ji BM, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  26. Brezgunova ME, Lieffrig J, Aubert E, Dahaoui S, Fertey P, Lebègue S, Ángyán JG, Fourmigué M, Espinosa E (2013) Chalcogen bonding: experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic–nucleophilic interactions. Cryst Growth Des 13:3283–3289

    Article  CAS  Google Scholar 

  27. Esrafili MD, Vakili M, Solimannejad M (2014) Cooperativity effects between σ-hole interactions: a theoretical evidence for mutual influence between chalcogen bond and halogen bond interactions in F2S···NCX···NCY complexes (X=F, Cl, Br, I; Y = H, F, OH). Mol Phys 112:2078–2084

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS, Janjić GV, Zarić SD (2013) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystal 4:12–31

    Article  Google Scholar 

  29. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  30. Esrafili MD, Vakili M, Solimannejad M (2014) Cooperative effects in pnicogen bonding: (PH2F)2–7 and (PH2Cl)2–7 clusters. Chem Phys Lett 609:37–41

    Article  CAS  Google Scholar 

  31. Bauza A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force. Angew Chem Int Ed 52:12317–12321

    Article  CAS  Google Scholar 

  32. Mani D, Arunan E (2013) The X–C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383

    Article  CAS  Google Scholar 

  33. Mani D, Arunan E (2013) Microwave spectroscopic and atoms in molecules theoretical investigations on the Ar···propargyl alcohol complex: Ar···H–O, Ar···π, and Ar···C interactions. ChemPhysChem 14:754–763

    Article  CAS  Google Scholar 

  34. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M= C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739–2746

    Article  CAS  Google Scholar 

  35. Grabowski SJ (2014) Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  36. Li Q, Guo X, Yang X, Li W, Cheng J, Li H (2014) A σ-hole interaction with radical species as electron donors: does single-electron tetrel bonding exist? Phys Chem Chem Phys 16:11617–11625

    Article  CAS  Google Scholar 

  37. Esrafili MD, Solimannejad M (2013) Revealing substitution effects on the strength and nature of halogen-hydride interactions: a theoretical study. J Mol Model 19:3767–3777

  38. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  39. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  40. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  Google Scholar 

  41. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York

    Google Scholar 

  44. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  45. Esrafili MD, Ahmadi B (2012) A theoretical investigation on the nature of Cl···N and Br···N halogen bonds in F-Ar-X···NCY complexes (X = Cl, Br and Y = H, F, Cl, Br, OH, NH2, CH3 and CN). Comput Theor Chem 997:77–82

    Article  CAS  Google Scholar 

  46. Esrafili MD, Mohammadirad N (2013) Insights into the strength and nature of carbene···halogen bond interactions: a theoretical perspective. J Mol Model 19:2559–2566

    Article  CAS  Google Scholar 

  47. Esrafili MD, Fatehi P, Solimannejad M (2014) Mutual interplay between pnicogen bond and dihydrogen bond in HMH···HCN···PH2X complexes (M = Be, Mg, Zn; X = H, F, Cl). Comput Theor Chem 1034:1–6

    Article  CAS  Google Scholar 

  48. Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2014) A theoretical evidence for mutual influence between S···N(C) and hydrogen/lithium/halogen bonds: competition and interplay between p-hole and r-hole interactions. Struct Chem 25:1197–1205

    Article  CAS  Google Scholar 

  49. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  50. Li Q, Qi H, Li R, Liu X, Li W, Cheng J (2012) Prediction and characterization of a chalcogen–hydride interaction with metal hybrids as an electron donor in F2CS–HM and F2CSe–HM (M = Li, Na, BeH, MgH, MgCH3) complexes. Phys Chem Chem Phys 14:3025–3030

    Article  CAS  Google Scholar 

  51. Politzer P, Murray JS, Clark T (2014) σ-Hole bonding: a physical interpretation. Top Curr Chem. doi:10.1007/128_2014_568

  52. Koch U, Popelier PLA (1995) Characterization of C-H···O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  53. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) Properties of the C−H···H dihydrogen bond: an ab initio and topological analysis. J Phys Chem A 108:10865–10872

  54. Esrafili MD, Mahdavinia G, Javaheri M, Sobhi HR (2014) A theoretical study of substitution effects on halogen–π interactions. Mol Phys 112:1160–1166

    Article  CAS  Google Scholar 

  55. Rozas I, Alkorta I, Elguero (2000) Behaviour of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 4595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Mohammadian-Sabet, F. Exploring σ-hole bonding in XH3Si···HMY (X=H, F, CN; M=Be, Mg; Y=H, F, CH3) complexes: a “tetrel-hydride” interaction. J Mol Model 21, 60 (2015). https://doi.org/10.1007/s00894-015-2614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2614-4

Keywords

Navigation