Skip to main content
Log in

σ-Holes, π-holes and electrostatically-driven interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A positive π-hole is a region of positive electrostatic potential that is perpendicular to a portion of a molecular framework. It is the counterpart of a σ-hole, which is along the extension of a covalent bond to an atom. Both σ-holes and π-holes become more positive (a) in going from the lighter to the heavier atoms in a given Group of the periodic table, and (b) as the remainder of the molecule is more electron-withdrawing. Positive σ- and π-holes can interact in a highly directional manner with negative sites, e.g., the lone pairs of Lewis bases. In this work, the complexes of 13 π-hole-containing molecules with the nitrogen lone pairs of HCN and NH3 have been characterized computationally using the MP2, M06-2X and B3PW91 procedures. While the electrostatic interaction is a major driving force in π-hole bonding, a gradation is found from weakly noncovalent to considerably stronger with possible indications of some degree of coordinate covalency.

Computed molecular surface electrostatic potential of SeO2 showing the π-hole above the selenium atom (middle). The position of the most positive electrostatic potential associated with the π-hole is indicated by a black hemisphere. Color ranges, in kcal mol-1, are: red, greater than 33; yellow, from 33 to 20; green, from 20 to 0; blue, less than 0 (negative).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark T, Henneman M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  2. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem 44:55–64

    Article  Google Scholar 

  3. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  4. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  5. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  6. Stevens ED (1979) Mol Phys 37:27–45

    Article  CAS  Google Scholar 

  7. Nyburg SC, Wong-Ng W (1979) Proc R Soc Lond A 367:29–45

    Article  CAS  Google Scholar 

  8. Ikuta S (1990) J Mol Struct THEOCHEM 205:191–201

    Article  Google Scholar 

  9. Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918

    Article  CAS  Google Scholar 

  10. Tsirelson VG, Zou PF, Tang T-H, Bader RWF (1995) Acta Crystallogr A 51:143–153

    Article  Google Scholar 

  11. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  12. Grabowski SJ, Bilewicz E (2006) Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  13. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  14. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  15. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  16. Politzer P, Murray JS (2009) In: Leszczynski J, Shukla M (eds) Practical Aspects of Computational Chemistry. Springer, Heidelberg, pp 149–163

    Chapter  Google Scholar 

  17. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  18. Riley KE, Murray JS, Concha MC, Politzer P, Hobza P (2009) J Chem Theor Comput 5:155–163

    Article  CAS  Google Scholar 

  19. Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  20. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model, doi:10.1007/s00894-011-1015-6

  21. Sjoberg P, Politzer P (1990) J Phys Chem 94:3959–3961

    Article  CAS  Google Scholar 

  22. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  23. Politzer P, Truhlar DG (eds) (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press, New York

    Google Scholar 

  24. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  25. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  26. Murray JS, Politzer P (2011) Rev Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  27. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  28. Murray JS, Politzer P (2009) Croat Chem Acta 82:267–275

    CAS  Google Scholar 

  29. Frisch MJ et al. (2009) Gaussian 09. Gaussian Inc, Wallingford, CT

    Google Scholar 

  30. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  32. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  33. Bondi A (1964) J Phys Chem 64:441–451

    Article  Google Scholar 

  34. Riley KE, Hobza P (2007) J Phys Chem A 111:8257–8263

    Article  CAS  Google Scholar 

  35. Riley KE, Pitoňák M, Černy J, Hobza P (2010) J Chem Theor Comput 6:66–80

    Article  CAS  Google Scholar 

  36. Johnson ER, Wolkow RA, DiLabio GA (2004) Chem Phys Lett 394:334–338

    Article  CAS  Google Scholar 

  37. Mohan N, Vijayalakshmi KP, Koga N, Suresh CH (2010) J Comput Chem 31:2874–2882

    CAS  Google Scholar 

  38. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  39. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  40. Politzer P, Huheey JE, Murray JS, Grodzicki M (1992) J Mol Struct THEOCHEM 259:99–120

    Article  Google Scholar 

  41. Politzer P, Murray JS, Lane P, Concha MC (2009) Int J Quantum Chem 109:3773–3780

    Article  CAS  Google Scholar 

  42. Murray JS, Lane P, Nieder A, Klapötke TM, Politzer P (2010) Theor Chem Acc 127:345–354

    Article  CAS  Google Scholar 

  43. Ignatyev IS, Schaefer HF III (2001) J Phys Chem A 105:7665–7671

    Article  CAS  Google Scholar 

  44. Del Bene JE, Alkorta I, Elguero J (2010) J Phys Chem A 114:12958–12962

    Article  Google Scholar 

  45. Lide DR (ed) (1997) Handbook of Chemistry and Physics, 78th edn. CRC, Boca Raton, FL

    Google Scholar 

  46. Brinck T, Murray JS, Politzer P (1993) Inorg Chem 32:2622–2625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TC gratefully acknowledges the generous support of the Deutsche Forschungsgemeinschaft as part of SFB583 (Sonderforschungsbereich 583) “Redox-Active Metal Complexes: Control of Reactivity in Molecular Architecture” and KER the NSF (National Science Foundation) EPSCOR (Experimental Program to Stimulate Competitive Research) Program (Grant number EPS-0701525) and the NSF PREM (Partnership for Research & Education in Materials) Program (Grant number DMR-0934115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J.S., Lane, P., Clark, T. et al. σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18, 541–548 (2012). https://doi.org/10.1007/s00894-011-1089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1089-1

Keywords

Navigation