Skip to main content
Log in

Mathematical modeling and physical reality in noncovalent interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Hellmann-Feynman theorem provides a straightforward interpretation of noncovalent bonding in terms of Coulombic interactions, which encompass polarization (and accordingly include dispersion). Exchange, Pauli repulsion, orbitals, etc., are part of the mathematics of obtaining the system’s wave function and subsequently its electronic density. They do not correspond to physical forces. Charge transfer, in the context of noncovalent interactions, is equivalent to polarization. The key point is that mathematical models must not be confused with physical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–d
Fig. 5

Similar content being viewed by others

References

  1. Schneider H-J (2009) Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  2. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619–1636

    CAS  Google Scholar 

  3. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Nagy PI (2014) Int J Mol Sci 15:19562–19633

    Article  CAS  Google Scholar 

  5. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  7. Politzer P, Murray JS, Clark T (2014) Topics Curr Chem. doi:10.1007/128_2014_568

    Google Scholar 

  8. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  9. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  10. Klein CL, Stevens ED (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, pp 25–64

  11. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  12. Politzer P, Murray JS (1998) J Mol Struct (Theochem) 425:107–114

    Article  Google Scholar 

  13. Politzer P, Murray JS (2002) Theor Chem Acct 108:134–142

    Article  CAS  Google Scholar 

  14. Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  15. Mo Y, Bao P, Gao J (2011) Phys Chem Chem Phys 13:6760–6775

    Article  CAS  Google Scholar 

  16. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  17. Palusiak M (2010) J Mol Struct (Theochem) 945:89–92

    Article  CAS  Google Scholar 

  18. Schrödinger E (1926) Ann Phys 80:437–490

    Article  Google Scholar 

  19. Güttinger P (1932) Z Phys 73:169–184

    Article  Google Scholar 

  20. Pauli W (1933) Handbuch der Physik, 24. Springer, Berlin, p 162

    Google Scholar 

  21. Hellmann H (1933) Z Phys 85:180–190

    Article  CAS  Google Scholar 

  22. Feynman RP (1939) Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  23. Musher JI (1966) Am J Phys 34:267–268

    Article  CAS  Google Scholar 

  24. Levine IN (2000) Quantum chemistry, 5th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  25. Fernandez Rico J, López R, Ema I, Ramírez G (2005) J Chem Theory Comput 1:1083–1095

    Article  Google Scholar 

  26. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  27. Berlin T (1951) J Chem Phys 19:208–213

    Article  CAS  Google Scholar 

  28. Slater JC (1972) J Chem Phys 57:2389–2396

    Article  CAS  Google Scholar 

  29. Bader RFW (2006) Chem Eur J 12:2896–2901

    Article  CAS  Google Scholar 

  30. Salem L, Wilson EB Jr (1962) J Chem Phys 36:3421–3427

    Article  CAS  Google Scholar 

  31. Hirschfelder JO, Eliason MA (1967) J Chem Phys 47:1164–1169

    Article  CAS  Google Scholar 

  32. Fernandez Rico J, López R, Ema I, Ramírez G (2004) Int J Quantum Chem 100:221–230

    Article  Google Scholar 

  33. Deb BM (1981) In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New York, pp ix–xiv (Preface)

  34. Scerri ER (2000) J Chem Ed 77:1492–1494

    Article  CAS  Google Scholar 

  35. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) J Mol Model 18:2461–2469

    Article  CAS  Google Scholar 

  36. Solimannejad M, Malekani M, Alkorta I (2010) J Phys Chem A 114:12106–12111

    Article  CAS  Google Scholar 

  37. Scheiner S (2011) J Chem Phys 134:164313, 1–9

    Article  Google Scholar 

  38. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  39. Clark T, Murray JS, Politzer P (2014) Aust J Chem 67:451–456

    Article  CAS  Google Scholar 

  40. Clark T, Politzer P, Murray JS (2015) WIREs Comp Mol Sci. doi:10.1002/wcms.1210

    Google Scholar 

  41. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  42. Solimannejad M, Gharabaghi M, Scheiner S (2011) J Chem Phys 134:24312, 1–6

    Article  Google Scholar 

  43. London F (1937) Trans Faraday Soc 33:8–26

    Article  CAS  Google Scholar 

  44. Bader RFW, Chandra AK (1968) Can J Chem 46:953–966

    Article  CAS  Google Scholar 

  45. Hunt KLC (1990) J Chem Phys 92:1180–1187

    Article  CAS  Google Scholar 

  46. Eisenschitz R, London F (1930) Z Phys 60:491–527

    Article  CAS  Google Scholar 

  47. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  48. Morokuma K, Kitaura K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, pp 215–242

  49. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  50. Sokalski WA, Roszak SM (1991) J Mol Struct (Theochem) 234:387–400

    Article  Google Scholar 

  51. Scheiner S (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH, Weinheim, pp 165–218

  52. Stone AJ, Misquitta AJ (2009) Chem Phys Lett 473:201–205

    Article  CAS  Google Scholar 

  53. Azar RJ, Horn PR, Sundstrom EJ, Head-Gordon M (2013) J Chem Phys 138:84102–84115

    Article  Google Scholar 

  54. Wang W, Wang NB, Zheng W, Tian A (2004) J Phys Chem A 108:1799–1805

    Article  CAS  Google Scholar 

  55. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  56. Hermansson K (2002) J Phys Chem A 106:4695–4702

    Article  CAS  Google Scholar 

  57. Qian W, Krimm S (2002) J Phys Chem A 106:6628–6636

    Article  CAS  Google Scholar 

  58. Isaacson W (2007) Einstein: his life and universe. Simon and Schuster, New York, p 549

    Google Scholar 

  59. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  60. Rowland RS, Taylor R (1996) J Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

This paper belongs to Topical Collection 6th conference on Modeling & Design of Molecular Materials in Kudowa Zdrój (MDMM 2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. & Clark, T. Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21, 52 (2015). https://doi.org/10.1007/s00894-015-2585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2585-5

Keywords

Navigation