Skip to main content

σ-Hole Bonding: A Physical Interpretation

  • Chapter
  • First Online:
Halogen Bonding I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 358))

Abstract

The anisotropic electronic densities of covalently-bonded Group IV–VII atoms frequently give rise to regions of positive electrostatic potential on the extensions of covalent bonds to these atoms. Through such positive “σ-holes,” the atoms can interact attractively and highly directionally with negative sites such as the lone pairs of Lewis bases, anions, π electrons, etc. In the case of Group VII this is called “halogen bonding.” Hydrogen bonding can be viewed as a less directional subset of σ-hole interactions. Since positive σ-holes often exist in conjunction with regions of negative potential, the atoms can also interact favorably with positive sites. In accordance with the Hellmann–Feynman theorem, all of these interactions are purely Coulombic in nature (which encompasses polarization and dispersion). The strength of σ-hole bonding increases with the magnitudes of the potentials of the positive σ-hole and the negative site; their polarizabilities must sometimes also be taken explicitly into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Born M, Oppenheimer JR (1927) Zur Quantentheorie der Molekeln. Ann Physik 389:457–484

    Article  Google Scholar 

  2. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, New York

    Google Scholar 

  3. Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig

    Google Scholar 

  4. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  5. Levine IN (1970) Quantum chemistry. Volume I: quantum mechanics and molecular electronic structure. Allyn and Bacon, Boston, p 449

    Google Scholar 

  6. Coulson CA, Bell RP (1945) Kinetic energy, potential energy and force in molecule formation. Trans Faraday Soc 41:141–149

    Article  CAS  Google Scholar 

  7. Berlin T (1951) Binding regions in diatomic molecules. J Chem Phys 19:208–213

    Article  CAS  Google Scholar 

  8. Bader RFW (2006) Pauli repulsions exist only in the eye of the beholder. Chem Eur J 12:2896–2901

    Article  CAS  Google Scholar 

  9. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  10. Stewart RF (1979) On the mapping of electrostatic properties from Bragg diffraction data. Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  11. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  12. Klein CL, Stevens ED (1988) Charge density studies of drug molecules. In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, Ch 2, pp 25–64

    Google Scholar 

  13. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  14. Ayers PW (2007) Using reactivity indicators instead of the electron density to describe Coulomb systems. Chem Phys Lett 438:148–152

    Article  CAS  Google Scholar 

  15. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  16. Murray JS, Politzer P (1998) Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J Mol Struct (Theochem) 425:107–114

    Article  CAS  Google Scholar 

  17. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  18. Delgado-Barrio G, Prat RF (1975) Deformed Hartree–Fock solutions for atoms. III. Convergent iterative process and results for O– –. Phys Rev A 12:2288–2297

    Article  CAS  Google Scholar 

  19. Sen KD, Politzer P (1989) Characteristic features of the electrostatic potentials of singly-negative monoatomic ions. J Chem Phys 90:4370–4372

    Article  CAS  Google Scholar 

  20. Stevens ED (1979) Experimental electron density distribution of molecular chlorine. Mol Phys 37:27–45

    Article  CAS  Google Scholar 

  21. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon. Acta Cryst B41:274–279

    Article  CAS  Google Scholar 

  22. Tsirelson VG, Zou PF, Tang T-H, Bader RFW (1995) Topological definition of crystal structure: determination of the bonded interactions in solid molecular chlorine. Acta Cryst A 51:143–153

    Article  Google Scholar 

  23. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen···halogen synthons: crystallographic and theoretical studies. Chem Eur J 12:8952–8960

    Article  CAS  Google Scholar 

  24. Bilewicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone. J Mol Struct 829:208–211

    Article  CAS  Google Scholar 

  25. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comput Theoret Chem 998:2–8

    Article  CAS  Google Scholar 

  26. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  30. Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci. doi:10.1016/j.jocs.2014.01.002

    Google Scholar 

  31. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M=C, Si, Ge and X=F, Cl, Br, I). J Mol Model 19:2739–2746

    Article  CAS  Google Scholar 

  32. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic chlorides, bromides and even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  33. Shields ZP, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonds. Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  34. Clark T (2013) σ-Holes. WIREs Comput Mol Sci 3:13–20

    Article  CAS  Google Scholar 

  35. Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  36. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional interaction. Int J Quant Chem 107:2286–2292

    Article  CAS  Google Scholar 

  37. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-Hole concept. J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  38. Guru Row TN, Parthasarathy R (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. S–S interactions and nonspherical shape of sulfur in crystals. J Am Chem Soc 103:477–479

    Article  Google Scholar 

  39. Ramasubbu N, Parthasarathy R (1987) Stereochemistry of incipient electrophilic and nucleophilic reactions at divalent selenium center: electrophilic – nucleophilic pairing and anisotropic shape of Se in Se–Se Interactions. Phosphorus Sulfur 31:221–229

    Article  CAS  Google Scholar 

  40. Clark T, Murray JS, Lane P, Politzer P (2008) Why are dimethyl sulfoxide and dimethyl sulfone such good solvents? J Mol Model 14:689–697

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS, Janjić GV, Zarić SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31

    Google Scholar 

  42. Bent HA (1968) Structural chemistry of donor–acceptor interactions. Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  43. Murray-Rust P, Motherwell WDS (1979) Computer retrieval and analysis of molecular geometry. 4. Intermolecular interactions. J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  44. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  45. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bonds. J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  46. Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J Am Chem Soc 99:4860–4862

    Article  CAS  Google Scholar 

  47. Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44(Suppl 19):57–64

    Article  Google Scholar 

  48. Brinck T, Murray JS, Politzer P (1993) Molecular surface electrostatic potentials and local ionization energies of group V–VII hydrides and their anions: relationships for aqueous and gas-phase acidities. Int J Quantum Chem 48:73–88

    Article  CAS  Google Scholar 

  49. Burling FT, Goldstein BM (1992) Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J Am Chem Soc 114:2313–2320

    Article  CAS  Google Scholar 

  50. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci 101:16789–16794

    Article  CAS  Google Scholar 

  51. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br–O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155–163

    Article  CAS  Google Scholar 

  52. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine and iodine. J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  53. Chopra D, Guru Row TN (2011) Role of organic fluorine in crystal engineering. CrystEngComm 13:2175–2186

    Article  CAS  Google Scholar 

  54. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246

    Article  CAS  Google Scholar 

  55. Politzer P, Murray JS, Concha MC (2008) σ-Hole bonding between like atoms: a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  56. Politzer P, Murray JS (2013) Molecular electrostatic potentials: some observations. In: Ghosh K, Chattaraj P (eds) Concepts and methods in modern theoretical chemistry, vol. 1: electronic structure and reactivity. Taylor & Francis, New York, pp 181–199

    Google Scholar 

  57. Widhalm M, Kratky C (1992) Synthesis and X-ray structure of binaphthyl-based macrocyclic diphosphanes and their Ni(II) and Pd(II) complexes. Chem Ber 125:679–689

    Article  CAS  Google Scholar 

  58. Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P-P distances. Inorg Chem Comm 10:713–716

    Article  CAS  Google Scholar 

  59. Meister J, Schwarz WHE (1994) Principal components of ionicity. J Phys Chem 98:8245–8252

    Article  CAS  Google Scholar 

  60. Politzer P, Harris RR (1970) Properties of atoms in molecules. I. A proposed definition of the charge on an atom in a molecule. J Am Chem Soc 92:6451–6454

    Article  CAS  Google Scholar 

  61. Ibrahim MAA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32:2564–2574

    Article  CAS  Google Scholar 

  62. Kolař M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comput 8:1325–1333

    Article  Google Scholar 

  63. Carter M, Rappé AK, Shing Ho P (2012) Scalable anisotropic shape and electrostatic models for biological bromine halogen bonds. J Chem Theory Comput 8:2461–2473

    Article  CAS  Google Scholar 

  64. Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the OPLS-AA force field: application to potent anti-HIV agents. J Chem Theory Comput 8:3895–3901

    Article  CAS  Google Scholar 

  65. Liem SY, Popelier PLA (2014) The hydration of serine: multipole moments versus point charges. Phys Chem Chem Phys 16:4122–4134

    Article  CAS  Google Scholar 

  66. Mo Y, Bao P, Gao J (2011) Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Phys Chem Chem Phys 13:6760–6775

    Article  CAS  Google Scholar 

  67. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  68. Palusiak M (2010) On the nature of the halogen bond – the Kohn-Sham molecular orbital approach. J Mol Struct (Theochem) 945:89–92

    Article  CAS  Google Scholar 

  69. Clark T, Murray JS, Politzer P (2014) Role of polarization in halogen bonds. Aust J Chem. doi:10.1071/ch13531

    Google Scholar 

  70. Clark T (2014) Directional electrostatic bonding. In: Frenking G, Shaik S (eds) The chemical bond: chemical bonding across the periodic table. Wiley-VCH, KGaA, Ch 18

    Google Scholar 

  71. Solimannejad M, Malekani M, Alkorta I (2010) Cooperative and diminutive unusual weak bonding in F3CX···HMgH···Y and F3CX···Y···HMgH trimers (X = Cl, Br; Y = HCN and HNC). J Phys Chem A 114:12106–12111

    Article  CAS  Google Scholar 

  72. Scheiner S (2011) On the properties of X–N noncovalent interactions for first-, second-, and third-row X atoms. J Chem Phys 134(1–9):164313

    Google Scholar 

  73. Grabowski SJ, Bilewicz E (2006) Cooperative halogen bonding effect – ab initio calculations on H2CO···(ClF)n complexes. Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  74. Li Q, Li R, Zhou Z, Li W, Cheng J (2012) S–X halogen bonds and H–X hydrogen bonds in H2CS–XY (XY = FF, ClF, ClCl, BrF, BrCl and BrBr) complexes: cooperativity and solvent effect. J Chem Phys 136(1–8):14302

    Google Scholar 

  75. Wang W, Wang NB, Zheng W, Tian A (2004) Theoretical study on the blueshifting halogen bond. J Phys Chem A 108:1799–1805

    Article  CAS  Google Scholar 

  76. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  77. Hermansson K (2002) Blue-shifting hydrogen bonds. J Phys Chem A 106:4695–4702

    Article  CAS  Google Scholar 

  78. Qian W, Krimm S (2002) Vibrational spectroscopy of hydrogen bonding: origin of the different behavior of the C–H–O hydrogen bond. J Phys Chem A 106:6628–6636

    Article  CAS  Google Scholar 

  79. Hobza P, Zahradnik R (1992) An essay on the theory and calculations of intermolecular interactions. Int J Quantum Chem 42:581–590

    Article  CAS  Google Scholar 

  80. Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  81. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability ii: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659

    Article  CAS  Google Scholar 

  82. Hirschfelder JO, Eliason MA (1967) Electrostatic Hellmann–Feynman theorem applied to the long-range interaction of two hydrogen atoms. J Chem Phys 47:1164–1169

    Article  CAS  Google Scholar 

  83. Hunt KLC (1990) Dispersion dipoles and dispersion forces: proof of Feynman’s “conjecture” and generalization to interacting molecules of arbitrary symmetry. J Chem Phys 92:1180–1187

    Article  CAS  Google Scholar 

  84. Mulliken RS (1952) Molecular compounds and their spectra II. J Am Chem Soc 74:811–824

    Article  CAS  Google Scholar 

  85. Scerri ER (2000) Have orbitals really been observed? J Chem Ed 77:1492–1494

    Article  CAS  Google Scholar 

  86. Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett 473:201–205

    Article  CAS  Google Scholar 

  87. Stone AJ, Price SL (1988) Some new ideas in the theory of intermolecular forces: anisotropic atom-atom potentials. J Phys Chem 92:3325–3335

    Article  CAS  Google Scholar 

  88. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  89. Sokalski WA, Roszak SM (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J Mol Struct (Theochem) 234:387–400

    Article  Google Scholar 

  90. Chen J, Martínez TJ (2007) QTPIE: charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chem Phys Lett 438:315–320

    Article  CAS  Google Scholar 

  91. Politzer P, Murray JS, Lane P (2007) σ-Hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  92. Aakerӧy CB, Fasulo M, Shultheiss N, Desper J, Moore C (2007) Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 129:13772–13773

    Article  Google Scholar 

  93. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 112:10856–10863

    Article  CAS  Google Scholar 

  94. Di Paolo T, Sandorfy C (1974) On the biological importance of the hydrogen bond breaking potency of fluorocarbons. Chem Phys Lett 26:466–469

    Article  Google Scholar 

  95. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786

    Article  CAS  Google Scholar 

  96. Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B–XY of the hydrogen bond B–HX. Angew Chem Int Ed 38:2686–2714

    Article  Google Scholar 

  97. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  98. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632

    Article  CAS  Google Scholar 

  99. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Electron density shift description of non-bonding intramolecular interactions. Comput Theor Chem 991:124–133

    Article  Google Scholar 

  100. Wang J, Giu J, Leszczynski J (2012) The electronic spectra and the H-bonding pattern of the sulfur and selenium substituted guanines. J Comput Chem 33:1587–1593

    Article  CAS  Google Scholar 

  101. Lu X, Li H, Zhu X, Zhu W, Liu H (2011) How does halogen bonding behave in solution? A theoretical study using implicit solvation model. J Phys Chem A 115:4467–4475

    Article  CAS  Google Scholar 

  102. Politzer P, Murray JS (2013) Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. CrystEngComm 15:3145–3150

    Article  CAS  Google Scholar 

  103. Del Bene JE, Alkorta I, Elguero J (2010) Do traditional, chlorine-shared and ion-pair halogen bonds exist? An ab initio investigation of FCl:CNX complexes. J Phys Chem A 114:12958–12962

    Google Scholar 

  104. Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN-R and SiN-R complexes with FCl and Cl2. Theor Chem Acc 131(1–10):1114

    Google Scholar 

  105. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  106. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  107. Isaacson W (2007) Einstein: his life and universe. Simon and Schuster, New York, p 549

    Google Scholar 

  108. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  109. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft as part of the Excellence Cluster “Engineering of Advanced Materials” and SFB953 “Synthetic Carbon Allotropes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Politzer, P., Murray, J.S., Clark, T. (2014). σ-Hole Bonding: A Physical Interpretation. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding I. Topics in Current Chemistry, vol 358. Springer, Cham. https://doi.org/10.1007/128_2014_568

Download citation

Publish with us

Policies and ethics