Skip to main content
Log in

Efficient single-state multi-party quantum key agreement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we proposed an efficient single-state three-party quantum key agreement (QKA) protocol. We proved that the protocol can resist potential outside attacks and inside attacks, and we generalized the efficient single-state three-party QKA scheme into the case of the N-party by substituting N-particle entangled state for three-particle entangled state as the resource quantum states. Compared with the previous QKA protocols, our scheme contains the good features of previous schemes, i.e., using one kind of maximally entangled states as the quantum resource, no requirements for pre-shared key between different participants, and no requirements for executing any unitary operations or quantum entanglement swapping. Furthermore, our scheme has significant improvements in terms of the times of quantum states transmission, the consumed qubits, and the qubit efficiency. In particular, as the number of participants increases, the number of qubits required by our scheme increases linearly rather than exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article.

References

  1. Diffifie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  2. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)

    Article  Google Scholar 

  3. Pieprzyk, J., Li, C.H.: Multiparty key agreement protocols. IEE Proc. Comput. Digital Tech. 147, 229–236 (2000)

    Article  Google Scholar 

  4. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  6. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)

    Article  ADS  Google Scholar 

  7. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  8. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  9. Gao, Z.K., Li, T., Li, Z.H.: Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astron. 63, 120311 (2020)

    Article  ADS  Google Scholar 

  10. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62(7), 70301 (2019)

    Article  ADS  Google Scholar 

  11. Yang, H., Xiao, M.: Multi-user quantum private query. Quantum Inf. Process. 19, 253 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  13. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  ADS  Google Scholar 

  15. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)

  16. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236–242. National Taiwan University of Science and Technology, Taipei, Taiwan, 10–11 Jun (2004)

  17. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010)

  18. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states’’. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  19. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liu, B., Xiao, D., Jia, H.Y., et al.: Collusive attacks to “circle-type’’ multi-party quantum key agreement protocols. Quantum Inf. Process. 15, 2113–2124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sun, Z., Cheng, R., Wu, C., et al.: New fair multiparty quantum key agreement secure against collusive attacks. Sci. Rep. 9, 17177 (2019)

    Article  ADS  Google Scholar 

  23. Sun, Z.W., Wu, C.H., Zheng, S.G., et al.: Efficient multiparty quantum key agreement with a single d-level quantum system secure against collusive attack. IEEE Access 7, 102377–102385 (2019)

    Article  Google Scholar 

  24. Sun, Z.Y., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, H.N., Liang, X.Q., Jiang, D.H., et al.: Multi-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 18, 242 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lin, S., Zhang, X., Guo, G.D., et al.: Multiparty quantum key agreement. Phys. Rev. A 104, 042421 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cai, B., Guo, G., Lin, S., Zuo, H., Yu, C.: Multipartite quantum key agreement over collective noise channels. IEEE Photonics J. 10(1), 1–11 (2018)

    Article  Google Scholar 

  29. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  33. Xu, T.J., Chen, Y., Geng, M.J., et al.: Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states. Quantum Inf. Process. 21, 266 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  34. McCutcheon, W., Pappa, A., Bell, B., et al.: Experimental verification of multipartite entanglement in quantum networks. Nat Commun. 7, 13251 (2016)

    Article  ADS  Google Scholar 

  35. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  36. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  38. Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 22(1), 13 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  39. Dutta, A., Pathak, A.: Collective attack free controlled quantum key agreement without quantum memory. arXiv:2308.05470 (2023)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62101197; China Postdoctoral Science Foundation under Grant No. 2021M691148; the Key Research & Development Plan of Hubei Province of China under Grant No. 2021BAA038; the Project of Science, Technology and Innovation Commission of Shenzhen Municipality of China under Grant Nos. JCYJ20210324120002006 and JSGG20210802153009028, the 2021 Industrial Technology Basic Public Service Platform Project of the Ministry of Industry and Information Technology of PRC under Grant No. 2021-0171-1-1; the excellent youthful project Scientific research of Hunan Provincial Department of Education: 20B491; “4310” cultivation program of clinical medicine research of Hengyang Medical School, University of South China [HengYiFa (2021) No. 1-2-7].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songfeng Lu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Lu, S., Zhou, Q. et al. Efficient single-state multi-party quantum key agreement. Quantum Inf Process 23, 150 (2024). https://doi.org/10.1007/s11128-024-04350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04350-9

Keywords

Navigation