Skip to main content
Log in

Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we put forward a novel single-state three-party semiquantum key agreement (SQKA) protocol with three-particle GHZ entangled states first. Different with previous quantum key agreement (QKA) protocols, the proposed single-state three-party SQKA protocol can realize the goal that a quantum party and two classical parties who only possess limited quantum capabilities equally contribute to the generation of a shared private key over quantum channels. Detailed security analysis turns out that the proposed single-state three-party SQKA protocol is secure against several famous attacks from an outside eavesdropper, such as the Trojan horse attack, the entangle-measure attack, the measure-resend attack and the intercept-resend attack. Moreover, it can resist the participant attack, which means that the shared private key cannot be determined fully by any nontrivial subset of three parties. The proposed single-state three-party SQKA protocol has the following nice features: (1) it only employs one kind of three-particle GHZ entangled states as initial quantum resource; (2) it does not need pre-shared keys among different parties; (3) it does not need unitary operations or quantum entanglement swapping. Finally, we generalize the proposed single-state three-party SQKA protocol into the case of \(N\)-party by only employing one kind of \(N\)-particle GHZ entangled states as initial quantum resource, which inherits the nice features of its three-party counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

All data and models generated or used during the study appear in the submitted article.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp.175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China. Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  10. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Article  Google Scholar 

  11. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267–1269 (2021)

    Article  Google Scholar 

  12. Qi, Z.T., Li, Y.H., Huang, Y.W., et al.: A 15-user quantum secure direct communication network. Light. Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  13. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon bell-state measurement. New J. Phys. 22, 063017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Article  Google Scholar 

  15. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A: Gen. Phys. 39(45), 14089–14099 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  19. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)

    Article  ADS  Google Scholar 

  20. Zhou, N.R., Zeng, G.H., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  ADS  Google Scholar 

  21. Tsai, C.W., Hwang, T.: Quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan (2009)

  22. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), National Taiwan University of Science and Technology, Taipei, Taiwan, pp.236–242 (2004)

  23. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states.” Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MATH  Google Scholar 

  24. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sun, Z.Y., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 55, 55–61 (2016)

    Article  MATH  Google Scholar 

  30. Wang, W., Zhou, B.M., Zhang, L.: The three-party quantum key agreement protocol with quantum Fourier transform. Int. J. Theor. Phys. 59, 1944–1955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Li, C., Yu, K., Kao, S., Hwang, T.: Authenticated semi-quantum key distributions without classical channel. Quantum Inf. Process. 15(7), 2881–2893 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Meslouhi, A., Hassouni, Y.: Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 16(1), 18 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, Z., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Annalen der Physik. 1700206 (2018)

  37. Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59(9), 2807–2815 (2020)

    Article  MATH  Google Scholar 

  38. Ye, T.Y., Geng, M.J., Xu, T.J., Chen, Y.: Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 21, 123 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 1–9 (2017)

    Article  MATH  Google Scholar 

  43. Ye, T.Y., Ye, C.Q.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(12), 15–25 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  49. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  50. Deng, F.G., Zhou, P., Li, X.H., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. https://arxiv.org/abs/quant-ph/0508168 (2005)

  51. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  52. Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “multiparty quantum key agreement with single particles.” Quantum Inf. Process. 12, 3411 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant No. 62071430 and No. 61871347), the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. JRK21002) and Zhejiang Gongshang University, Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (No. 2013E10012) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, TJ., Chen, Y., Geng, MJ. et al. Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states. Quantum Inf Process 21, 266 (2022). https://doi.org/10.1007/s11128-022-03615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03615-5

Keywords

Navigation