Skip to main content
Log in

Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |−〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  6. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009)

    Article  ADS  Google Scholar 

  7. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B 25(8), 080308 (2016)

    Article  ADS  Google Scholar 

  8. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A-Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Liu, W.J., Liu, C., Liu, Z.H., Liu, J.F., Geng, H.T.: Same initial states attack in Yang others.’s quantum private comparison protocol and the improvement. Int. J. Theor. Phys. 53(1), 271–276 (2014)

    Article  MATH  Google Scholar 

  10. Liu, W.J., Liu, C., Chen, H. W., Li, Z.Q., Liu, Z.H.: Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Liu, W.J., Liu, C., Wang, H.B., Liu, J.F., Wang, F., Yuan, X.M.: Secure quantum private comparison of equality based on asymmetric W state. Int. J. Theor. Phys. 53(6), 1804–1813 (2014)

    Article  MATH  Google Scholar 

  12. Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)

    Article  ADS  Google Scholar 

  13. Liu, W.J., Wang, H.B., Yuan, G.L., Xu, Y., Chen, Z.Y., An, X.X., Ji, F.G., Gnitou, G.T.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Liu, W.J., Chen, Z.F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54 (2), 472–483 (2015)

    Article  MATH  Google Scholar 

  15. Wang, H.B., Zhou, X.Y., An, X.X., Cui, M.M., Fu, D.S.: Deterministic joint remote preparation of a four-qubit cluster-type state via GHZ states. Int. J. Theor. Phys. 55(8), 3588–3596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  17. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MATH  Google Scholar 

  18. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  19. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sun, Z.W., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12 (11), 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sun, Z.W., Huang, J.W., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    Article  ADS  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  28. Fisher, K.A., Broadbent, A., Shalm, L.K., Yan, Z.: Quantum computing on encrypted data. Nat. Commun. 5(2), 3074 (2013)

    Google Scholar 

  29. Sun, Z.W., Yu, J., Wang, P., Xu, L.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91(5), 052303 (2015)

    Article  ADS  Google Scholar 

  30. Li, Q., Chan, W.H., Zhang, S.Y.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    Article  ADS  Google Scholar 

  31. Shen, J., Shen, J., Chen, X., Huang, X., Susilo, W.: An efficient public auditing protocol with novel dynamic structure for cloud data. IEEE Trans. Inf. Forens. Secur. doi:10.1109/TIFS.2017.2705620 (2017)

  32. Liu, Q., Cai, W.D., Shen, J., Fu, Z.J., Liu, X.D., Linge, N.: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment. Securi. Commun. Netw. 9(17), 4002–4012 (2016)

    Article  Google Scholar 

  33. Fu, Z.J., Shu, J.G., Wang, J., Liu, Y.L., Lee, S.Y.: Privacy-preserving smart similarity search based on simhash over encrypted data in cloud computing. J. Int. Technol. 16(3), 453–460 (2015)

    Google Scholar 

  34. Fu, Z., Huang, F., Sun, X., Vasilakos, A.V., Yang, C.-N.: Enabling semantic search based on conceptual graphs over encrypted outsourced data. IEEE Trans. Serv. Comput. doi:10.1109/TSC.2016.2622697 (2016)

  35. Fu, Z.J., Huang, F.X., Ren, K., Weng, J., Wang, C.: Privacy-preserving smart semantic search based on conceptual graphs over encrypted outsourced data. IEEE Trans. Inf. Forens. Secur. 12(8), 1874–1884 (2017)

    Article  Google Scholar 

  36. Xia, Z.H., Wang, X.H., Sun, X.M., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

    Article  Google Scholar 

  37. Fu, Z.J., Wu, X.L., Guan, C.W., Sun, X.M., Ren, K.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forens. Secur. 11(12), 2706–2716 (2016)

    Article  Google Scholar 

  38. Shen, J., Liu, D., Shen, J., Liu, Q., Sun, X.: A secure cloud-assisted urban data sharing framework for ubiquitous-cities. Pervasive Mob. Comput. doi:10.1016/j.pmcj.2017.03.013 (2017)

  39. Fu, Z.J., Ren, K., Shu, J.G., Sun, X. M., Huang, F.X.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

    Article  Google Scholar 

  40. IBM quantum computing platform (2016). http://research.ibm.com/ibm-q/qx/. Online accessed 12-April-2017

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their comments that improved the quality of this paper. This work is supported by the National Nature Science Foundation of China (Grant Nos. 61373131, 61502101 and 61672290), the Six Talent Peaks Project of Jiangsu Province (Grant No. 2015-XXRJ-013), Natural Science Foundation of Jiangsu Province (Grant No. BK20140823, BK20171458), Natural science Foundation for colleges and universities of Jiangsu Province (Grant No.16KJB520030), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Chen, ZY., Ji, S. et al. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation. Int J Theor Phys 56, 3164–3174 (2017). https://doi.org/10.1007/s10773-017-3484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3484-6

Keywords

Navigation