Skip to main content
Log in

Two-party Quantum Key Agreement with Six-particle Entangled States Against Collective Noise

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum key agreement (QKA) is an advanced technique that allows multiple parties to share a secret key through cooperation. At present, most QKA protocols have the problems of weak anti-noise ability and low qubit efficiency. In this paper, two improved two-party QKA protocols are proposed using two sets of special logical qubits, which are immune to the collective noise. The main idea of these two protocols is that first, through the measurement correlation of the six-particle entangled states, the communication parties can fairly build a common key. Then, decoy logical qubits and delayed measurement technology are employed to prevent eavesdropping in quantum channels. Security analysis indicates that both protocols are unconditionally secure and capable of resisting internal and external attacks. In addition, compared with existing protocols, both protocols improve the efficiency because they transmit longer qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Siam. Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gordon, J.: Strong RSA keys. Electron. Lett. 20(12), 514–516 (1984)

    Article  ADS  Google Scholar 

  3. Lancien, C., Majenz, C.: Weak approximate unitary designs and applications to quantum encryption. Quantum. 4, 313 (2020)

    Article  Google Scholar 

  4. Kuang, R., Perepechaenko, M.: Quantum encryption with quantum permutation pad in IBMQ systems. Epj. Quantum. Technol. 9(1), 26 (2022)

    Article  Google Scholar 

  5. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675–1680 (2000)

    Article  ADS  Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–190 (2002)

    Article  ADS  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  8. Ekert, A.K.: Quantum Cryptography and Bell’s Theorem. In: Quantum Measurements in Optics, pp. 413–418. Springer, Boston, MA (1992)

    Chapter  Google Scholar 

  9. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A. 349(1-4), 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  ADS  Google Scholar 

  12. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  13. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MATH  Google Scholar 

  15. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  17. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891 (2014)

    Article  MATH  Google Scholar 

  18. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gao, H., Chen, X.G., Qian, S.R.: Two-party quantum key agreement protocols under collective noise channel. Quantum Inf. Process. 17, 140 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Yang, Y.G., Gao, S., Li, D., Zhou, Y.H., Shi, W.M.: Quantum Inf. Process. 18(3), 1–17 (2019)

    Google Scholar 

  22. Wang, S.S., Jiang, D.H., Xu, G.B., Zhang, Y.H., Liang, X.Q.: Quantum key agreement with Bell states and Cluster states under collective noise channels. Quantum Inf. Process. 18(6), 1–14 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y.H., Wang, M.F., Shi, W.M., Yang, Y.G., Zhang, J.: Two-party quantum key agreement against collective noisy channel. Quantum Inf. Process. 19(3), 1–15 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Guo, J.H., Yang, Z., Bai, M.Q., Mo, Z.W.: Quantum Key Agreement Protocols with GHZ States Under Collective Noise Channels. Int. J. Theor. Phys. 61(3), 1–12 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Zhou, B.M., Zhang, L.: The three-party quantum key agreement protocol with quantum Fourier transform. Int. J. Theor. Phys. 59, 1944–1955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, H., Lu, S., Zhu, J., Wu, J., Zhou, Q., Li, T.: A Tree-type Multiparty Quantum Key Agreement Protocol Against Collusive Attacks. Int. J. Theor. Phys. 62(1), 7 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, W., Jiang, M.: Multi-party quantum key agreement with parameter-independent channels. Pramana. 97(2), 65 (2023)

    Article  ADS  Google Scholar 

  28. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  29. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary Quantum Signature Based on Local Indistinguishability of Orthogonal Product States. Int. J. Theor. Phys. 58, 1036–1045 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Tang, J., Shi, L., Wei, J.: Controlled quantum key agreement based on maximally three-qubit entangled states. Mod. Phys. Lett. B. 34(18), 2050201 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Karim, F., Abulkasim, H., Alabdulkreem, E., Ahmed, N., Jamjoom, M., Abbas, S.: Improvements on new quantum key agreement protocol with five-qubit Brown states. Mod. Phys. Lett. A. 37(20), 2250128 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  33. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72, 044302 (2005)

    Article  ADS  Google Scholar 

  34. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  35. Liu, F., Su, Q., Wen, Q.Y.: Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations. Int. J. Theor. Phys. 53, 1730–1737 (2014)

    Article  MATH  Google Scholar 

  36. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A-Math. Theor. 40(44), 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14, 1469–1486 (2015)

    Article  ADS  MATH  Google Scholar 

  38. Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. London A. 452(1946), 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science. 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  40. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204), the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34), and the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Fang.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SX., Fang, L. & Fang, XJ. Two-party Quantum Key Agreement with Six-particle Entangled States Against Collective Noise. Int J Theor Phys 62, 235 (2023). https://doi.org/10.1007/s10773-023-05414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05414-9

Keywords

Navigation