Skip to main content
Log in

Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  8. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)

    Article  MathSciNet  Google Scholar 

  9. Long, G., Deng, F., Wang, C., Li, X., Wen, K., Wang, W.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  10. Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14, 2211–2225 (2015)

    Article  ADS  MATH  Google Scholar 

  11. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the qroup-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Info. Process. 15, 2593–2603 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Shukla, C.: Design and analysis of quantum communication protocols. Ph.D. thesis, Jaypee Institute of Information Technology, Sector-62, Noida, India, pp. 1–166 (2015)

  18. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. arXiv:1608.00101 (2016)

  19. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)

    Article  ADS  Google Scholar 

  22. Li, Q., Chan, W.-H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    Article  ADS  Google Scholar 

  23. Yu, K.-F., Yang, C.-W., Liao, C.-H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13, 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)

    Article  ADS  Google Scholar 

  25. Zhang, X.-Z., Gong, W.-G., Tan, Y.-G., Ren, Z.-Z., Guo, X.-T.: Quantum key distribution series network protocol with m-classical Bobs. Chin. Phys. B 18, 2143–2148 (2009)

    Article  ADS  Google Scholar 

  26. Sun, Z.-W., Du, R.-G., Long, D.-Y.: Quantum key distribution with limited classical Bob. Int. J. Quantum Inf. 11, 1350005 (2013)

    Article  MathSciNet  Google Scholar 

  27. Nie, Y., Li, Y., Wang, Z.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. process. 12, 437–448 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Qin, L., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)

    Article  ADS  Google Scholar 

  29. Li, L., Qui, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46, 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jason, L., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo, Y.-P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process 15, 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zou, X.-F., Qiu, D.-W.: Three-step semiquantum secure direct communication protocol. Phys. Mech. Astron. 57, 1696–1702 (2014)

    Article  Google Scholar 

  33. Chou, W.-H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. arXiv:1607.07961v2 (2016)

  34. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: Information Theory (ISIT), IEEE International Symposium, pp. 686–690 (2015)

  35. Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9, 1427–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 686–690 (2015)

  37. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15, 2067–2090 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhang, W., Qiu, D., Zou, X., Mateus, P.: A single-state semi-quantum key distribution protocol and its security proof. arXiv:1612.03087 (2016)

  39. Zhang, W., Qiu, D.: Security of a single-state semi-quantum key distribution protocol. arXiv:1612.03170 (2016)

  40. Chou, Y.-H., Lin, F.-J., Zeng, G.-J.: An efficient novel online shopping mechanism based on quantum communication. Electron. Commer. Res. 14, 349–367 (2014)

    Article  Google Scholar 

  41. Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)

  42. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15, 1750007 (2017)

    Article  MATH  Google Scholar 

  43. Sharma, R.D., De, A.: Quantum voting using single qubits. Indian J. Sci. Technol. 9, 98637 (2016)

    Google Scholar 

  44. Fung, C.-H.F., Qi, B., Tamaki, K., Lo, H.-K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  45. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  46. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)

    Article  ADS  Google Scholar 

  47. Boyer, M., Dan, K., Tal, M.: Quantum key distribution with classical Bob. In: Quantum, Nano, and Micro Tech., ICQNM’07. First International Conference, IEEE, p. 10 (2007)

  48. Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. arxiv:1702.00389v1 (2017)

  49. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Comput. 17, 210–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bennett, C.H., et al.: Experimental quantum cryptography. J. Cryp. 5, 3–28 (1992)

    MATH  Google Scholar 

  51. Pappu, R., et al.: Physical one-way functions. Science 297, 2026–2030 (2002)

    Article  ADS  Google Scholar 

  52. Tomamichel, M., et al.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  Google Scholar 

  53. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)

    Article  ADS  Google Scholar 

  55. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Yu, Z.B., Gong, L.H., Wen, R.H.: Novel multiparty controlled bidirectional quantum secure direct communication based on continuous-variable states. Int. J. Theor. Phys. 55, 1447 (2016)

    Article  MATH  Google Scholar 

  58. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  59. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Informatiom. Cambridge University Press, New Delhi (2008)

    Google Scholar 

Download references

Acknowledgements

CS thanks Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS Fellows no. 15F15015. KT and AP thank Defense Research and Development Organization (DRDO), India for the support provided through the project number ERIP/ER/1403163/M/01/1603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, C., Thapliyal, K. & Pathak, A. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf Process 16, 295 (2017). https://doi.org/10.1007/s11128-017-1736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1736-2

Keywords

Navigation