Skip to main content
Log in

Multi-Party Quantum Key Agreement by an Entangled Six-Qubit State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Since the first quantum key agreement protocol based on Bell state was presented by Zhou et al., much attention has focused on it, which is based on entangled states and product states. In this paper, we propose a multi-party quantum key agreement protocol, in which the genuinely maximally entangled six-qubit states are used. The presented protocol allows participants to share a secret key and preserves the following advantages. First, the outcome of the protocol is influenced by all parties; Second, the presented protocol is fairness, i.e., no one can determine the shared key alone; Third, outside eavesdroppers cannot gain the generated key without introducing any error. The security analysis shows that our protocol can resist both outside attacks and inside attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: IEEE Trans. Inf. Theory 22(6), 644 (1976)

    Article  MathSciNet  Google Scholar 

  2. Ingemarsson, I., Tang, D., Wong, C.: Trans. IEEE Inf. Theory 28(5), 714 (1982)

    Article  MathSciNet  Google Scholar 

  3. Grover, L.K.: in Proceedings of 28th Annual ACM Symposium on Theory of Computing (1996), pp. 212C219

  4. Shor, P.W.: in Proceedings of 35th Annual Symposium on the Foundation of Computer Science (1994), pp. 124C134

  5. Shor, P.W., Preskill, J.: Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G.: in Proceedings of IEEE International Conference on Com- puter, System and Signal (1984), pp. 175C179

  7. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Goldenberg, L., Vaidman, L.: Phys. Rev. Lett. 75(7), 1239 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Deng, F.G., Long, G.L.: Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  10. Zhang, C.-M., Song, X.-T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.-W., Yin, Z.-Q., Chen, W., Han, Z.-F.: Sci. Bullet 59, 2825–2828 (2014)

    Article  Google Scholar 

  11. Zhang, C.X., Guo, B.H., Cheng, G.M., Guo, J.J., Fan, R.H.: Sci. China: Phys. Mech. Astron. 57, 2043–2048 (2014)

    Article  ADS  Google Scholar 

  12. Hillery, M., Buzek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Karlsson, A., Koashi, M., Imoto, N.: Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  14. Gottesman, D.: Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, Z.j., Li, Y., Man, Z.x.: Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Long, G.L., Liu, X.S.: Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  17. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  18. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  19. Gu, B., et al.: Sci. China: Phys. Mech. Astron 54, 942–947 (2011)

    ADS  Google Scholar 

  20. Gu, B., et al.: Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  21. Sun, Z.W., Du, R.G., Long, D.Y.: Int. J. Quantum Inf. 10(01) (2012)

  22. Sun, Z.W., Du, R.G., Long, D.Y.: Int. J. Theor. Phys. 51, 1946 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ren, B.C., et al.: Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  24. Chang, Y., Xu, C., Zhang, S., Yan, L.: Sci. Bullet 58, 4571–4576 (2013)

    Article  Google Scholar 

  25. Chang, Y., Xu, C., Zhang, S., Yan, L. Sci. Bullet 59, 2541–2546 (2014)

    Article  Google Scholar 

  26. Zou, X.F., Qiu, D.W.: Sci. China: Phys. Mech. Astron 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  27. Yang, Y.G., Wen, Q.Y.: J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: Opt. Commun. 283(7), 1561 (2010)

    Article  ADS  Google Scholar 

  29. Wen, L., Yong Bin, W., Zheng Tao, J.: Opt. Commun. 284(12), 3160 (2011)

    Article  ADS  Google Scholar 

  30. Hsin Yi, T., Jason, L., Tzonelih, H.: Quantum Inf. Process 11(2), 373 (2012)

    Article  MathSciNet  Google Scholar 

  31. Sun, Z.W., Long, D.Y.: Int. J. Theor. Phys. 52, 212 (2013)

    Article  MathSciNet  Google Scholar 

  32. Sun, Z., Yu, J., Wang, P., Xu, L., Wu, C.: Quantum Inf. Process 14(6), 2125–2133 (2015)

    Article  ADS  Google Scholar 

  33. Zeng, G., Keitel, C.H.: Phys. Rev. A 65, 042312 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Li, Q., Chan, W.H., Long, D.Y.: Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Sun, Z., Yu, J., Wang, P., Xu, L.: Phys. Rev. A 91, 052303 (2015)

    Article  ADS  Google Scholar 

  36. Zhou, N., Zeng, G., Xiong, J.: Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  37. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  38. Tsai, C., Hwang, T., Technical Report, C-S-I-E, NCKU (2009)

  39. Song Kong, C., Chia Wei, T., Tzonelih, H.: Int. J. Theor. Phys. 50(6), 1793 (2011)

    Article  Google Scholar 

  40. Song Kong, C., Tzonelih, H.: Opt. Commun. 283(6), 1192 (2010)

    Article  ADS  Google Scholar 

  41. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum Inf. Process. 13(3), 649 (2014)

    Article  MathSciNet  Google Scholar 

  42. Shi, R.H., Zhong, H.: Quantum Inf. Process. 12(2), 921 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  43. Liu, B., Gao, F., Huang, W., Wen, Q.y.: Quantum Inf. Process. 12(4), 1797 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Quantum Inf. Process. 12(11), 3411 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Borras, A., Plastino, A., Batle, J., Zander, C., Casas, M., Plastino, A.: J. Phys. A: Math. Theor. 40(44), 13407 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  46. Cleve, R., Gottesman, D., Lo, H.K.: Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  47. Long, Y., Qiu, D., Long, D.: J. Phys. A: Math. Theor. 45(19) (2012)

  48. Lo, H.K., Chau, H.F.: Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  49. He, G.P.: J. Phys. A, Math. Theor, 44 (2011)

  50. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Phys. Rev. Lett. 109(10) (2012)

  51. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  52. Gao, T., Yan, Y.L., Wang, Z.X.: J. Phys. A: Math. Gen. 38(25), 5761 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  53. Zhu, S.L., Qiao-Yan, W., Fei, G., Fu, C.: Phys. Rev. A 78(6), 064304 (2008)

    Article  ADS  Google Scholar 

  54. Liu, D., Chen, J.L., Jiang, W.: Int. J. Theor. Phys. 51(9), 2923 (2012)

    Article  Google Scholar 

  55. Hwang, W.Y.: Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  56. Li, C.Y., et al.: Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  57. Li, C.Y., et al.: Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

  58. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.j: Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  59. Li, X.H., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  60. Cai, Q.Y.: Phys. Lett. A 351, 23 (2006)

    Article  ADS  Google Scholar 

  61. Lin, J., Yang, C.W., Tsai, C.W., Hwang, T.: Int. J. Theor. Phys. 52 (1), 156 (2013)

    Article  MathSciNet  Google Scholar 

  62. Lin, J., Hwang, T.: Quantum Inf. Process 12(1), 685 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  63. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications Cambridge university press (2009)

Download references

Acknowledgments

The authors would like to thank anonymous referees for very useful comments. This work is supported by the National Natural Science Foundation of China (No.61272013, No. 61402293 and No.61171072), the Key Program for Technology and Innovation of College in Guangdong Province (No. CXZD1143), Natural Science Foundation of Guangdong Province (No. S2013040011789), Shenzhen Technology Plan (No. JCYJ20150324141711665, No. JCYJ20150324141711694, No. JCYJ20150324141711562 and No. JCYJ20130401095947219), Natural Science Foundation of SZU(No. 201435), Innovative Research Team of Shenzhen University, and Postdoctoral Science Foundation of China (No. 2015M572360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, C., Wang, P. et al. Multi-Party Quantum Key Agreement by an Entangled Six-Qubit State. Int J Theor Phys 55, 1920–1929 (2016). https://doi.org/10.1007/s10773-015-2831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2831-8

Keywords

Navigation