Skip to main content
Log in

Quantum e-commerce: a comparative study of possible protocols for online shopping and other tasks related to e-commerce

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A set of quantum protocols for online shopping is proposed and analyzed to establish that it is possible to perform secure online shopping using different types of quantum resources. Specifically, a single photon based, a Bell state based and two 3-qubit entangled state-based quantum online shopping schemes are proposed. The Bell state-based scheme, being a completely orthogonal state-based protocol, is fundamentally different from the earlier proposed schemes which were based on conjugate coding. One of the 3-qubit entangled state-based scheme is built on the principle of entanglement swapping which enables us to accomplish the task without transmission of the message encoded qubits through the channel. Possible ways of generalizing the entangled state-based schemes proposed here to the schemes which use multiqubit entangled states are also discussed. Further, all the proposed protocols are shown to be free from the limitations of the recently proposed protocol of Huang et al. (Quantum Inf Process 14:2211–2225, 2015) which allows the buyer (Alice) to change her order at a later time (after initially placing the order and getting it authenticated by the controller). The proposed schemes are also compared with the existing schemes using qubit efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The BB84 and GV subroutines are shown to be equivalent in the ideal conditions, while over noisy channels this equivalence does not hold anymore [33].

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, (1994) Santa Fe. IEEE Computer Society Press (1994)

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  8. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  9. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  10. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  11. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  12. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59–70 (2014)

    Article  ADS  Google Scholar 

  13. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)

    Article  ADS  Google Scholar 

  14. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  17. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wen, X.J.: An E-payment system based on quantum group signature. Phys. Scr. 82, 065403–065407 (2010)

    Article  Google Scholar 

  20. Wen, X.J., Nie, Z.: An e-payment system based on quantum blind and group signature. In: Proceedings of International Symposium on Data, Privacy, and E-Commerce, America (2010)

  21. Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12, 549–558 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12, 1651–1657 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14, 2211–2225 (2015)

    Article  ADS  Google Scholar 

  24. Chou, Y.-H., Lin, F.-J., Zeng, G.-J.: An efficient novel online shopping mechanism based on quantum communication. Electron. Commer. Res. 14, 349–367 (2014)

    Article  Google Scholar 

  25. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Shao, A.-X., Zhang, J.-Z., Xie, S.-C.: An e-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 56, 1241–1248 (2017)

    Article  Google Scholar 

  27. Zhang, J.-Z., Yang, Y.-Y., Xie, S.-C.: A third-party e-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56, 2981–2989 (2017)

    Article  MathSciNet  Google Scholar 

  28. Buscemi, F., Hall, M.J., Ozawa, M., Wilde, M.M.: Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett. 112, 050401 (2014)

    Article  ADS  Google Scholar 

  29. Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of the security of quantum key distribution. J. Cryptol. 19, 381–439 (2006)

    Article  MathSciNet  Google Scholar 

  30. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)

    Article  MathSciNet  Google Scholar 

  31. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  32. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595 (2014)

    Article  ADS  Google Scholar 

  33. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: Various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum. Inf. Process. 15, 4681 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. Quantum Inf. Process. 17, 161 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  40. Pirandola, S., Braunstein, S.L.: Physics: unite to build a quantum Internet. Nature 532, 169–171 (2016)

    Article  ADS  Google Scholar 

  41. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Info. 15, 1750007 (2017)

    Article  Google Scholar 

  42. Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)

    Article  ADS  Google Scholar 

  43. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6, 1–127 (2008)

    Article  Google Scholar 

  44. Maitra, A.: Measurement device-independent quantum dialogue. Quantum Inf. Process. 16, 305 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. Hamada, M.: Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution. J. Phys. A Math. General 37, 8303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  46. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 589. Cambridge University Press, New Delhi (2008)

    Google Scholar 

  47. Song, J., Zhang, S.: Comment on: Quantum exam. Phys. Lett. A 350, 174 (2006)

    Article  Google Scholar 

  48. Kanamori, Y., Yoo, S.M., Gregory, D.A., Sheldon, F.T.: On quantum authentication protocols. In: InGLOBECOM’05. IEEE Global Telecommunications Conference, IEEE, vol. 3, p. 5 (2005)

  49. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A. 62, 022305 (2000)

    Article  ADS  Google Scholar 

  50. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  51. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z-j: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  52. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  53. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  54. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16, 1850047 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

KT and AP thank Defense Research & Development Organization (DRDO), India for the support provided through the Project Number ERIP/ER/1403163/M/01/1603. They also thank Chitra Shukla for her interest in this work and some useful criticism of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, K., Pathak, A. Quantum e-commerce: a comparative study of possible protocols for online shopping and other tasks related to e-commerce. Quantum Inf Process 18, 191 (2019). https://doi.org/10.1007/s11128-019-2309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2309-3

Keywords

Navigation