Skip to main content
Log in

Which verification qubits perform best for secure communication in noisy channel?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In secure quantum communication protocols, a set of single qubits prepared using 2 or more mutually unbiased bases or a set of n-qubit \((n\ge 2)\) entangled states of a particular form are usually used to form a verification string which is subsequently used to detect traces of eavesdropping. The qubits that form a verification string are referred to as decoy qubits, and there exists a large set of different quantum states that can be used as decoy qubits. In the absence of noise, any choice of decoy qubits provides equivalent security. In this paper, we examine such equivalence for noisy environment (e.g., in amplitude damping, phase damping, collective dephasing and collective rotation noise channels) by comparing the decoy-qubit-assisted schemes of secure quantum communication that use single-qubit states as decoy qubits with the schemes that use entangled states as decoy qubits. Our study reveals that the single- qubit-assisted scheme performs better in some noisy environments, while some entangled-qubit-assisted schemes perform better in other noisy environments. Specifically, single-qubit-assisted schemes perform better in amplitude damping and phase damping noisy channels, whereas a few Bell-state-based decoy schemes are found to perform better in the presence of the collective noise. Thus, if the kind of noise present in a communication channel (i.e., the characteristics of the channel) is known or measured, then the present study can provide the best choice of decoy qubits required for implementation of schemes of secure quantum communication through that channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Except the parity-1 Bell states, W state is also observed to be decoherence free in CD noise. Here, we restrict our discussion only up to Bell states. However, we note that W state is also found to be an excellent choice as decoy qubits for a channel with CD noise.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  9. Degiovanni, I.P., Berchera, I.R., Castelletto, S., Rastello, M.L., Bovino, F.A., Colla, A.M., Castagnoli, G.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)

    Article  ADS  Google Scholar 

  10. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  11. Jun, L., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652–2655 (2006)

    Article  ADS  Google Scholar 

  12. Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    Google Scholar 

  13. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  14. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  15. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D 61, 785–790 (2011)

    Article  ADS  Google Scholar 

  16. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  17. Hai-Jing, C., He-Shan, S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403–2409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  21. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)

    Article  MathSciNet  Google Scholar 

  22. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  23. Zhao, Y., Qi, B., Ma, X., Lo, H.K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  ADS  Google Scholar 

  24. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  25. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  26. Peng, C.Z., Zhang, J., Yang, D., Gao, W.B., Ma, H.X., Yin, H., Zeng, H.-P., Yang, T., Wang, X.-B., Pan, J.W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  27. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)

    Article  ADS  Google Scholar 

  28. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  29. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)

    Article  ADS  Google Scholar 

  30. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  34. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  35. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998)

    Article  ADS  Google Scholar 

  36. Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Li, J., Song, D.J., Li, R., Lu, X.: A quantum secure direct communication protocol based on four qubit cluster state. Secur. Commun. Netw. 8, 36 (2015)

    Article  Google Scholar 

  38. Li, J., Jin, H.F., Jing, B.: Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin. Sci. Bull. 57, 4434 (2012)

    Article  MATH  Google Scholar 

  39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    MATH  Google Scholar 

  40. Huang, J.H., Zhu, S.Y.: Necessary and sufficient conditions for the entanglement sudden death under amplitude damping and phase damping. Phys. Rev. A 76, 062322 (2007)

    Article  ADS  Google Scholar 

  41. Turchette, Q.A., Myatt, C.J., King, B.E., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  42. Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  43. Marques, B., Matoso, A.A., Pimenta, W.M., Gutiérrez-Esparza, A.J., Santos, M.F., Pádua, S.: Experimental simulation of decoherence in photonics qudits. Sci. Rep. (2015). doi:10.1038/srep16049

    Google Scholar 

  44. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  45. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  46. Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  47. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)

    Article  MATH  Google Scholar 

  49. Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology, Pasadena (1998)

    Google Scholar 

  50. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  51. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. Zong, X.L., Du, C.Q., Yang, M., Yang, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude damping by local unitary operations. Phys. Rev. A 90, 062345 (2014)

    Article  ADS  Google Scholar 

  53. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  54. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  55. Leung, D., Vandersypen, L., Zhou, X., Sherwood, M., Yannoni, C., Kubinec, M., Chuang, I.: Experimental realization of a two-bit phase damping quantum code. Phys. Rev. A 60, 1924 (1999)

    Article  ADS  Google Scholar 

  56. Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Jaynes–Cummings model with phase damping. Phys. Rev. A 56, 3139 (1997)

    Article  ADS  Google Scholar 

  57. Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)

    Article  ADS  Google Scholar 

  58. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. A 92, 017901 (2004)

    ADS  Google Scholar 

  59. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.D., Thapliyal, K., Pathak, A. et al. Which verification qubits perform best for secure communication in noisy channel?. Quantum Inf Process 15, 1703–1718 (2016). https://doi.org/10.1007/s11128-015-1207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1207-6

Keywords

Navigation