Skip to main content
Log in

Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Goldenberg–Vaidman (GV) protocol for quantum key distribution uses orthogonal encoding states of a particle. Its security arises because operations accessible to Eve are insufficient to distinguish the two states encoding the secret bit. We propose a two-particle cryptographic protocol for quantum secure direct communication, wherein orthogonal states encode the secret, and security arises from restricting Eve from accessing any two-particle operations. However, there is a non-trivial difference between the two cases. While the encoding states are perfectly indistinguishable in GV, they are partially distinguishable in the bipartite case, leading to a qualitatively different kind of information-versus-disturbance trade-off and also options for Eve in the two cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Masanes, L., Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)

    Article  ADS  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)

  5. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  7. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  8. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Deng, F.-G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  10. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  12. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  13. Xiu, X.-M., Dong, H.-K., Dong, L., Gao, Y.-J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282, 2457 (2009)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

  15. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  16. Boileau, J.-C., Gottesman, D., Laamme, R., Poulin, D., and Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

  17. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  18. Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  19. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  20. Mor, T.: No cloning of orthogonal states in composite systems. Phys. Rev. Lett. 80, 3137 (1998)

    Article  ADS  Google Scholar 

  21. Csizáar, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24, 339 (1978)

    Article  Google Scholar 

  22. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  23. Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  24. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  25. Niu, C.-S., Griffiths, R.B.: Two-qubit copying machine for economical quantum eavesdropping. Phys. Rev. A 60, 2764 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  26. Pathak, A.: Elements of quantum computation and quantum communication. Chapman & Hall, Routledge (2013)

    MATH  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

PY thanks the Raman Research Institute, Bangalore, India for a student fellowship, during which most of this work was completed. AP and RS thank Department of Science and Technology (DST), India, for support provided through projects SR/S2/LOP-0012/2010 and SR/S2/LOP-02/2012, respectively. AP also thanks the Operational Program Education for Competitiveness—European Social Fund project CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Srikanth, R. & Pathak, A. Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf Process 13, 2731–2743 (2014). https://doi.org/10.1007/s11128-014-0825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0825-8

Keywords

Navigation