Skip to main content
Log in

A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The effect of noise on various protocols of secure quantum communication has been studied. Specifically, we have investigated the effect of amplitude damping, phase damping, squeezed generalized amplitude damping, Pauli type as well as various collective noise models on the protocols of quantum key distribution, quantum key agreement, quantum secure direct quantum communication and quantum dialogue. From each type of protocol of secure quantum communication, we have chosen two protocols for our comparative study: one based on single-qubit states and the other one on entangled states. The comparative study reported here has revealed that single-qubit-based schemes are generally found to perform better in the presence of amplitude damping, phase damping, squeezed generalized amplitude damping noises, while entanglement-based protocols turn out to be preferable in the presence of collective noises. It is also observed that the effect of noise depends upon the number of rounds of quantum communication involved in a scheme of quantum communication. Further, it is observed that squeezing, a completely quantum mechanical resource present in the squeezed generalized amplitude channel, can be used in a beneficial way as it may yield higher fidelity compared to the corresponding zero squeezing case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In fact, a random choice of MM or CM mode by Alice provides security in the protocol. In CM mode, both the legitimate parties opt to check eavesdropping while in MM mode they proceed with the communication.

References

  1. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175 (1984)

  2. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  9. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192 (2010)

    Article  ADS  Google Scholar 

  11. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. An, N.B.: Secure dialogue without prior key distribution. J. Korean Phys. Soc. 47, 562 (2005)

    Google Scholar 

  13. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283, 1984 (2010)

    Article  ADS  Google Scholar 

  15. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  17. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  18. Jun, L., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652 (2006)

    Article  ADS  Google Scholar 

  19. Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354 (2006)

    Google Scholar 

  20. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  21. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18 (2005)

    Article  ADS  Google Scholar 

  22. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  23. Hai-Jing, C., He-Shan, S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290 (2006)

    Article  ADS  MATH  Google Scholar 

  24. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  26. Shukla, C.: Design and analysis of quantum communication protocols. Ph.D. thesis, Jaypee Institute of Information Technology (2014)

  27. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    MATH  Google Scholar 

  29. Preskill, J.: Lecture notes for physics 229: Quantum information and computation. California Institute of Technology (1998)

  30. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A: Math. Theor. 40, 13735 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12, 3725 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  33. Banerjee, S., Srikanth, R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Huang, J.H., Zhu, S.Y.: Necessary and sufficient conditions for the entanglement sudden death under amplitude damping and phase damping. Phys. Rev. A 76, 062322 (2007)

    Article  ADS  Google Scholar 

  35. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  36. Chiuri, A., Rosati, V., Vallone, G., Pádua, S., Imai, H., Giacomini, S., Macchiavello, C., Mataloni, P.: Experimental realization of optimal noise estimation for a general Pauli channel. Phys. Rev. Lett. 107, 253602 (2011)

    Article  ADS  Google Scholar 

  37. Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)

    Article  ADS  Google Scholar 

  38. Fern, J., Whaley, K.B.: Lower bounds on the nonzero capacity of Pauli channels. Phys. Rev. A 78, 062335 (2008)

    Article  ADS  Google Scholar 

  39. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)

    Article  ADS  Google Scholar 

  40. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Thapliyal, K., Banerjee, S., Pathak, A.: Tomograms for open quantum systems: in (finite) dimensional optical and spin systems. Ann. Phys. 366, 148 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys. 8, 117 (2012)

    Article  ADS  Google Scholar 

  43. Turchette, Q.A., Myatt, C.J., King, B.E., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  44. Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  45. Marques, B., Matoso, A.A., Pimenta, W.M., Gutiérrez-Esparza, A.J., Santos, M.F., Pádua, S.: Experimental simulation of decoherence in photonics qudits. Sci. Rep. 5, 16049 (2015)

    Article  ADS  Google Scholar 

  46. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Jaynes-Cummings model with phase damping. Phys. Rev. A 56, 3139 (1997)

    Article  ADS  Google Scholar 

  48. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  50. Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)

    Article  ADS  Google Scholar 

  51. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. A 92, 017901 (2004)

    ADS  Google Scholar 

  52. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  53. Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)

    Article  MATH  Google Scholar 

  54. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

AP acknowledges the support provided by DST, India, through the project number EMR/2015/000393. SB acknowledges support provided by the project number 03(1369)/16/EMR-II funded by Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Thapliyal, K., Pathak, A. et al. A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf Process 15, 4681–4710 (2016). https://doi.org/10.1007/s11128-016-1396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1396-7

Keywords

Navigation