Skip to main content
Log in

The quantum cryptographic switch

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We illustrate the principle of a cryptographic switch for a quantum scenario, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information through a quantum channel. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to the choice of the Bell state is made available by Charlie to Bob can the latter recover Alice’s information. By varying the amount of information Charlie gives, he can continuously alter the information recovered by Bob. The performance of the protocol as subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: “Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. Bangalore (1984)

  2. Ekert A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Hillery M., Buzek V., Bertaiume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Shimizu K., Imoto N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60, 157–166 (1999)

    Article  ADS  Google Scholar 

  6. Bostrom K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Goldenberg L., Vaidman L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Lucamarini M., Mancini S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  9. Long G. et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  10. Li X.H. et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    Google Scholar 

  11. Yan F.L., Zhang X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  12. Man Z.X., Zhang Z.J., Li Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  13. Zhu A.D., Xia Y., Fan Q.B., Zhang S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  14. Tsai C.W., Hsieh C.R., Hwang T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)

    Article  ADS  Google Scholar 

  15. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing through noisy quantum channels, arXiv:1012.5570v2

  17. Jia H.Y., Wen Q.Y., Song T.T., Gao F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545 (2011)

    Article  ADS  Google Scholar 

  18. Giannotti F., Pedreschi D.: Mobility, Data Mining and Privacy: Geographic Knowledge Discovery. Springer, New York (2008)

    Book  Google Scholar 

  19. Brassard G., Broadent A., Fitzsimons J., Gambs S.: Anonymous quantum communication. Lect. Notes Comput. Sci. 4833, 460–473 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Srikanth R., Banerjee S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinatha, N., Omkar, S., Srikanth, R. et al. The quantum cryptographic switch. Quantum Inf Process 13, 59–70 (2014). https://doi.org/10.1007/s11128-012-0487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0487-3

Keywords

Navigation