Skip to main content
Log in

Rosmarinic acid: new aspects

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Rosmarinic acid (RA) is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid which is one of the most frequently occurring caffeic acid esters in the plant kingdom besides chlorogenic acid. RA has numerous biological and pharmacological activities. Its occurrence is spread all over the land plant kingdom. Enzymes and genes of its biosynthesis are well investigated. RA can be produced in high amounts in in vitro cultivated plant cells which offers the possibility of an economical exploitation. The review reports about recent findings in the biosynthesis of RA and related caffeic acid esters and discusses some aspects of the evolution of the biosynthetic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4CL:

4-Hydroxycinnamic acid CoA-ligase

C4H:

Cinnamic acid 4-hydroxylase

CoA:

Coenzyme A

CPR:

NADPH:cytochrome P450 reductase

CYP:

Cytochrome P450

DHPL:

3,4-Dihydroxyphenyllactic acid

HCT:

Hydroxycinnamoyltransferase

HQT:

Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase

HST:

Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase

HPPD:

Hydroxyphenylpyruvate dioxygenase

HPPR:

Hydroxyphenylpyruvate reductase

HPR2:

Cytosolic hydroxypyruvate reductase

PAL:

Phenylalanine ammonia-lyase

pHPL:

4-Hydroxyphenyllactic acid

pHPP:

4-Hydroxyphenylpyruvic acid

RA:

Rosmarinic acid

RAS:

Rosmarinic acid synthase

RNAi:

Inhibitory RNA

TAT:

Tyrosine aminotransferase

References

  • Abdullah Y, Schneider B, Petersen M (2008) Occurrence of rosmarinic acid, chlorogenic acid and rutin in Marantaceae species. Phytochem Lett 1:199–203

    Article  CAS  Google Scholar 

  • Acar G, Dogan NM, Duru ME, Kivrak I (2010) Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. Afric J Microbiol Res 4:1154–1161

    CAS  Google Scholar 

  • Afifi MS (2003) A novel 4′-O-diglycoside of decarboxyrosmarinic acid from Blepharis ciliaris. Pharm Biol 41:487–490

    Article  CAS  Google Scholar 

  • Agata I, Hatano T, Nishibe S, Okuda T (1988) Rabdosiin, a new rosmarinic acid dimer with a lignan skeleton from Rabdosia japonica. Chem Pharm Bull 36:3223–3225

    Article  CAS  Google Scholar 

  • Agata I, Hatano T, Nishibe S, Okuda T (1989) A tetrameric derivative of caffeic acid from Rabdosia japonica. Phytochemistry 28:2447–2450

    Article  CAS  Google Scholar 

  • Ahmad A, Pandurangan A, Singh N, Ananad P (2012) A mini review on chemistry and biology of Hamelia patens (Rubiaceae). Pharmacogn J 4:1–4

    Article  CAS  Google Scholar 

  • Amzad Hossain M, Salehuddin SM, Kabir MJ, Rahman SMM, Rupasinghe HPV (2009) Sinensetin, rutin, 3′-hydroxy-5,6,7,4′-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of the skin of apple fruit. Food Chem 113:185–190

    Article  CAS  Google Scholar 

  • Amzad HM, Salehuddin SM, Mizanur RSM, Kabir MJ (2010) The effects of solvents on recovery of polyphenols from the pink Fuji apple skin. Afric J Food Agric Nutr Devel 10:2556–2569

    CAS  Google Scholar 

  • Aquino R, Ciavatta ML, De Simone F, Pizza C (1990) A flavanone glycoside from Hamelia patens. Phytochemistry 29:2358–2360

    Article  CAS  Google Scholar 

  • Aquino R, Morelli S, Lauro MR, Abdo S, Saija A, Tomaino A (2001) Phenolic constituents and antioxidant activity of an extract of Anthurium versicolor leaves. J Nat Prod 64:1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Ariffin F, Heong Chew S, Bhupinder K, Karim AA, Huda N (2011) Antioxidant capacity and phenolic composition of fermented Centella asiatica herbal teas. J Sci Food Agric 91:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Asakawa Y (1995) Chemical constituents of the bryophytes—chemical constituents of Anthocerotae (hornworts). In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products. Springer, Wien, pp 460–464

    Chapter  Google Scholar 

  • Astani A, Reichling J, Schnitzler P (2012) Melissa officinalis extract inhibits attachment of Herpes simplex virus in vitro. Chemotherapy 58:70–77

    Article  PubMed  CAS  Google Scholar 

  • Baczek K, Przybyl JL, Weglarz Z (2010) Intraspecific chemical variability of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim Acta Hortic 869:119–122

    Google Scholar 

  • Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Meinhard J, Petersen M (2006) Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 224:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Bohm BA (1968) Phenolic compounds in ferns—III. An examination of some ferns for caffeic acid derivatives. Phytochemistry 7:1825–1830

    Article  CAS  Google Scholar 

  • Boldizsár I, Szűcs Z, Füzfai Z, Molnár-Perl I (2006) Identification and quantification of the constituents of madder root by gas chromatography and high-performance liquid chromatography. J Chromatogr A 1133:259–274

    Article  PubMed  CAS  Google Scholar 

  • Booth MPS, Conners R, Rumsby G, Brady RL (2006) Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol 360:178–189

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217

    Article  PubMed  CAS  Google Scholar 

  • Cantino PD, Harley RM, Wagstaff SJ (1992) Genera of Labiatae: status and classification. In: Hartley RM, Reynolds T (eds) Advances in Labiate sciences. Royal Botanic Gardens, Kew, pp 511–522

    Google Scholar 

  • Chaprin N, Ellis BE (1984) Microspectrophotometric evaluation of rosmarinic acid accumulation in single cultured plant cells. Can J Bot 62:2278–2282

    Article  CAS  Google Scholar 

  • Cho YJ, Lee KH, Cha WS, Ju IS, Yun DH, An BJ, Lee SH, Kim MU, Kim JH, Chun SS (2009) Purification and identification of inhibitory compounds from Cheongmoknosang mulberry leaves (Morus alba L.) on Helicobacter pylori. J Appl Biol Chem 52:65–69

    Article  CAS  Google Scholar 

  • Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicon: consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  PubMed  CAS  Google Scholar 

  • Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14

    Article  PubMed  CAS  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  CAS  Google Scholar 

  • De Tommasi N, De Simone F, De Feo V, Pizza C (1991) Phenylpropanoid glycosides and rosmarinic acid from Momordica balsamina. Planta Med 57:201

    Article  PubMed  Google Scholar 

  • De-Eknamkul W, Ellis BE (1987a) Purification and characterization of tyrosine aminotransferase activities from Anchusa officinalis cell cultures. Arch Biochem Biophys 257:430–438

    Article  PubMed  CAS  Google Scholar 

  • De-Eknamkul W, Ellis BE (1987b) Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26:1941–1946

    Article  CAS  Google Scholar 

  • Douce R, Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 69–101

    Google Scholar 

  • Duff RJ, Villarreal JC, Cargill DC, Renzaglia KS (2007) Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110:214–243

    Article  Google Scholar 

  • Eberle D, Ullmann P, Werck-Reichhart D, Petersen M (2009) cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Mol Biol 69:239–253

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R, Werck-Reichhart D (2006) Cytochromes P450 in phenolic metabolism. Phytochem Rev 5:239–270

    Article  CAS  Google Scholar 

  • El Dib RA, Marzouk MS, Moharram FA, El-Shenawy SM, Elazeem RM (2009) Chemical and biological investigation of Calothamnus quadrifidus R.Br. Bull Fac Pharm (Cairo University) 47:193–202

    Google Scholar 

  • Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291–297

    PubMed  CAS  Google Scholar 

  • Erkan N (2012) Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chem 133:775–781

    Article  CAS  Google Scholar 

  • Feng L, Wanninayake U, Strom S, Geiger J, Walker KD (2011) Mechanistic, mutational, and structural evaluation of a Taxus phenylalanine aminomutase. Biochemistry 50:2919–2930

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Martin T, Villaescusa L, Bartolome C, Rubio B, Diaz AM (1995) Rosmarinic acid and iridoids of Scrophularia scorodonia L. Colloques – Institut National de la Recherche Agronomique 69

  • Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Beuerle T, Ullmann P, Werck-Reichhart D, Pichersky E (2002) Differential production of meta hydroxylated phenylpropanoids in Sweet Basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol 130:1536–1544

    Article  PubMed  CAS  Google Scholar 

  • Gertlowski C, Petersen M (1993) Influence of the carbon source on growth and rosmarinic acid production in suspension cultures of Coleus blumei. Plant Cell Tiss Org Cult 34:183–190

    Article  CAS  Google Scholar 

  • Goldberg JD, Yoshida T, Brick P (1994) Crystal structure of a NAD-dependent d-glycerate dehydrogenase at 2.4 Å resolution. J Mol Biol 236:1123–1140

    Article  PubMed  CAS  Google Scholar 

  • Grant GA (1989) A new family of 2-hydroxyacid dehydrogenases. Biochem Biophys Res Commun 165:1371–1374

    Article  PubMed  CAS  Google Scholar 

  • Grayer RJ, Eckert MR, Veitch NC, Kite GC, Marin PD, Kokubun T, Simmonds MSJ, Paton AJ (2003) The chemotaxonomic significance of two bioactive caffeic acid esters, nepetoidins A and B, in the Lamiaceae. Phytochemistry 64:519–528

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Du G, Li L, Li R (2004) Inhibitory activities of rosmarinic acid against plant pathogenic fungi. Weishengwuxue Tongbao 31:71–76

    CAS  Google Scholar 

  • Harborne JB (1966) Caffeic acid ester distribution in higher plants. Z Naturforsch 21b:604–605

    Google Scholar 

  • Haslam E (1993) Shikimic acid—metabolism and metabolites. Wiley, Chichester

    Google Scholar 

  • Häusler E, Petersen M, Alfermann AW (1991) Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Z Naturforsch 46c:371–376

    Google Scholar 

  • Häusler E, Petersen M, Alfermann AW (1992) Rosmarinsäure in Blechnum-Spezies. In: Haschke HP, Schnarrenberger C (eds) Botanikertagung 1992 Berlin. Akademie-Verlag, Berlin, p 507

    Google Scholar 

  • Häusler E, Petersen M, Alfermann AW (1993) Isolation of protoplasts and vacuoles from cell suspension cultures of Coleus blumei Benth. Plant Cell Rep 12:510–512

    Article  Google Scholar 

  • Hawas UW, Ibrahim LF, Farrag ARH, Hussein JS, Elshiekh I (2009) Evaluation of antiulcer activity of Chenopodium moquinianum and kaempferol glycosides in rats. World J Chem 4:73–82

    CAS  Google Scholar 

  • Heller W, Kühnl T (1985) Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 3′-hydroxylase in parsley cell suspension cultures. Arch Biochem Biophys 241:453–460

    Article  PubMed  CAS  Google Scholar 

  • Hess JL (1993) Vitamin E, α-tocopherol. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC, Boca Raton, pp 111–134

    Google Scholar 

  • Hiller K (1965) Zur Kenntnis der Inhaltsstoffe einiger Saniculoidae. 1. Mitteilung: Sanicula europaea L.—Isolierung und quantitative Erfassung von Chlorogen- und Rosmarinsäure. Pharmazie 20:574–579

    PubMed  CAS  Google Scholar 

  • Hiller K, Kothe N (1967) Chlorogen- und Rosmarinsäure—Vorkommen und quantitative Verteilung in Pflanzen der Saniculoideae. Pharmazie 22:220–221

    CAS  Google Scholar 

  • Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  CAS  Google Scholar 

  • Ho LK, Chang CR, Chang YS (1995) Chemical components from Triumfetta bartramia. J Chin Chem Soc (Taipei) 42:93–95

    CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–102

    Article  PubMed  CAS  Google Scholar 

  • Holzmannová V (1995) Kyselina rosmarinová a její biologická aktivita. Chem Listy 90:486–496

    Google Scholar 

  • Hörhammer L, Wagner H, Schilcher H (1962) Zur Kenntnis der Inhaltsstoffe von Lycopus europaeus 1. Mitteilung: Über die Inhaltsstoffe von Arzneipflanzen mit hormon- und antihormonähnlicher Wirkung. Arneimittelforschung 12:1–7

    Google Scholar 

  • Hounsome N, Hounsome B, Tomos D, Edwards-Jones G (2009) Changes in antioxidant compounds in white cabbage during winter storage. Postharvest Biol Tec 52:173–179

    Article  CAS  Google Scholar 

  • Hu H, Wang G, Liu J, Cao H, Zheng X (2006) Studies on phenolic compounds from Polygonum aviculare. Zhongguo Zhongyao Zazhi 31:740–742

    PubMed  CAS  Google Scholar 

  • Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC (2010) Crystal structures of a Populus tomentosa 4-coumarate: CoA ligase shed light on its enzymatic mechanisms. Plant Cell 22:3093–3104

    Article  PubMed  CAS  Google Scholar 

  • Huang HL, Li DL, Li XM, Xu B, Wang BG (2007) Antioxidative principals of Jussiaea repens: an edible medicinal plant. Int J Food Sci Technol 42:1219–1227

    Article  CAS  Google Scholar 

  • Huang B, Duan Y, Yi B, Sun L, Yu X, Sun H, Zhang H, Chen W (2008a) Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway. Russ J Plant Physiol 55:390–399

    Article  CAS  Google Scholar 

  • Huang B, Yi B, Duan Y, Sun L, Yu X, Guo J, Chen W (2008b) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35:601–612

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Chen Y, Wen Y, Li D, Chen W, Liu J, Lu F (2010) Chemical constituents of Picria fel-terrae. Guangxi Zhiwu 30:887–890

    CAS  Google Scholar 

  • Hücherig S (2010) RNAi-Untersuchungen und Überexpression von Genen der Rosmarinsäurebiosynthese. Dissertation, Philipps-Universität Marburg

  • Hücherig S, Petersen M (2012) RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy root cultures of Coleus blumei. Plant Cell Tiss Org Cult. doi:10.1007/s11240-012-0277-8

    Google Scholar 

  • Janiak V, Petersen M, Zentgraf M, Klebe G, Heine A (2010) Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. Acta Cryst D66:593–603

    CAS  Google Scholar 

  • Janicsák G, Máthé I, Miklóssy-Vári V, Blunden G (1999) Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem Syst Ecol 27:733–738

    Article  Google Scholar 

  • Jiang RW, Lau KM, Hon PM, Mak TCW, Woo KS, Fung KP (2005) Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem 12:237–246

    Article  PubMed  CAS  Google Scholar 

  • Kanlayavattanakul M, Lourith N (2012) Biologically active phenolics in seed coat of three sweet Tamarindus indica varieties grown in Thailand. Adv Sci Engin Med 4:511–516

    CAS  Google Scholar 

  • Kanlayavattanakul M, Ospondpant D, Ruktanonchai U, Lourith N (2012) Biological activity assessment and phenolic compounds characterization from the fruit pericarp of Litchi chinensis for cosmetic applications. Pharm Biol 50:1384–1390

    Article  PubMed  CAS  Google Scholar 

  • Kelley CJ, Mahajan JR, Brooks LC, Neubert LA, Breneman WR, Carmack M (1975) Polyphenolic acids of Lithospermum ruderale Dougl. ex Lehm. (Boraginaceae). 1. Isolation and structure determination of lithospermic acid. J Org Chem 40:1804–1815

    Article  CAS  Google Scholar 

  • Kelley CJ, Harruff RC, Carmack M (1976) The polyphenolic acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids. J Org Chem 41:449–455

    Article  CAS  Google Scholar 

  • Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–323

    Article  PubMed  CAS  Google Scholar 

  • Kochan E, Wyoskinska H, Chmiel A, Grabias B (1999) Rosmarinic acid and other phenolic acids in hairy roots of Hyssopus officinalis. Z Naturforsch 54c:11–16

    Google Scholar 

  • Kowalczyk A (1996) HPLC analysis of polyphenolic compounds in Knautia arvensis Coult. Beitr Züchtungsforsch 2:389–392

    Google Scholar 

  • Kühnl T, Koch U, Heller W, Wellmann E (1987) Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-d-quinate/shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys 258:226–232

    Article  PubMed  Google Scholar 

  • Kumaraswamy GK, Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S, Mamer O, Faubert D (2011) Metabolomics technology to phenotype resistance in barley against Gibberella zeae. Eur J Plant Pathol 130:29–43

    Article  CAS  Google Scholar 

  • Kuzma L, Wysokinska H (2003) Production of secondary metabolites in shoots of Salvia nemorosa L. cultured in vitro. Biotechnologia 4:154–159

    Google Scholar 

  • Lallemand LA, McCarthy JG, McSweeney S, McCarthy AA (2012a) Purification, crystallization and preliminary x-ray diffraction analysis of a hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) from Coffea canephora involved in chlorogenic acid biosynthesis. Acta Cryst F68:824–828

    CAS  Google Scholar 

  • Lallemand LA, Zubieta C, Lee SG, Wang Y, Acajjaoui S, Timmins J, McSweeney S, Jez JM, McCarthy JG, McCarthy AA (2012b) A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiol 160:249–260

    Article  PubMed  CAS  Google Scholar 

  • Landmann C, Hücherig S, Fink B, Hoffmann T, Dittlein D, Coiner HA, Schwab W (2011) Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.). Planta 234:305–320

    Article  PubMed  CAS  Google Scholar 

  • Lasure A, Van Poel B, Pieters L, Claeys M, Gupta M, Vanden Berghe D, Vlietinck AJ (1994) Complement-inhibiting properties of Apeiba tibourbou. Planta Med 60:276–277

    Article  PubMed  CAS  Google Scholar 

  • Le Claire E, Schwaiger S, Banaigs B, Stuppner H, Gafner F (2005) Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. J Agric Food Chem 53:4367–4372

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Yang MC, Kim KH, Kwon HC, Choi SU, Lee KR (2008) A new phenolic amide from the roots of Paris verticillata. Molecules 13:41–45

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Yang SW, Park SR, Yang JH, Chae BS, Eun JS, Jeon H, Lim JP, Hwang YH, Park JH, Kim DK (2009) Antioxidative constituents of Cyperus difformis L. Nat Prod Sci 15:241–245

    CAS  Google Scholar 

  • Li X, Zhang Y, Yang L, Feng Y, Liu Y, Zeng X (2012) Studies of phenolic acid constituents from the whole plant of Sarcandra glabra. Zhongyao Xinyao Yu Linchuang Yaoli 23:295–298

    Google Scholar 

  • Litvinenko VI, Popova TP, Simonjan AV, Zoz IG, Sokolov VS (1975) “Gerbstoffe” und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med 27:372–380

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Foo Y (1999) Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51:91–94

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY, Wong H (1999) Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis. Phytochemistry 52:1149–1152

    Article  CAS  Google Scholar 

  • Ly TN, Shimoyamada M, Yamauchi R (2006) Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth. leaves and their antioxidative activity. J Agric Food Chem 54:3786–3793

    Article  PubMed  CAS  Google Scholar 

  • Males Z, Plazibat M (2000) Investigation of chemical composition of Zostera noltii Hornem. Farmaceutski Glasnik 56:109–118

    CAS  Google Scholar 

  • Maskovic P, Solujic S, Mihailovic V, Mladenovic M, Cvijovic M, Mladenovic J, Acamovic-Dokovic G, Kurcubic V (2011) Phenolic compounds and biological activity of Kitaibelia vitifolia. J Med Food 14:1617–1623

    Article  PubMed  CAS  Google Scholar 

  • Matsuno M, Nagatsu A, Ogihara Y, Ellis BE, Mizukami H (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224

    Article  PubMed  CAS  Google Scholar 

  • Mau CJ, Karp F, Ito M, Honda G, Croteau RB (2010) A candidate cDNA clone for (−)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71:373–379

    Article  PubMed  CAS  Google Scholar 

  • Mazzanti G, Battinelli L, Pompeo C, Serrilli AM, Rossi R, Sauzullo I, Mengoni F, Vullo V (2008) Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Nat Prod Res 22:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Melillo de Magalhaes P, Dupont I, Hendrickx A, Joly A, Raas T, Dessy S, Sergent T, Schneider YJ (2012) Anti-inflammatory effect and modulation of cytochrome P450 activities by Artemisia annua tea infusions in human intestinal Caco-2 cells. Food Chem 134:864–871

    Article  PubMed  CAS  Google Scholar 

  • Míka V, Kubáň V, Klejdus B, Odstrčilová V, Nerušil P (2005) Phenolic compounds as chemical markers of low taxonomic levels in the family Poaceae. Plant Soil Environm 51:506–512

    Google Scholar 

  • Morant M, Schoch GA, Ullmann P, Ertunc T, Little D, Olsen CE, Petersen M, Negrel J, Werck-Reichhart D (2007) Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol 63:1–19

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Omoto T, Asai I, Shimomura K, Yoshihira K, Ishimaru K (1998) Rosmarinic acid and related phenolics in hairy root cultures of Hyssopus officinalis. Plant Cell Tiss Org Cult 53:75–78

    Article  CAS  Google Scholar 

  • Nickrent DL, Parkinson CL, Palmer JD, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  • Nishizawa M, Tsuda M, Hayashi K (1990) Two caffeic acid tetramers having enantiomeric phenyldihydronaphthalene moieties from Macrotomia euchroma. Phytochemistry 29:2645–2649

    Article  CAS  Google Scholar 

  • Ogata A, Tsuruga A, Matsuno M, Mizukami H (2004) Elicitor-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures: activities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnol 21:393–396

    Article  CAS  Google Scholar 

  • Olivier DK, van Wyk BE, van Heerden FR (2008) The chemotaxonomic and medicinal significance of phenolic acids in Arctopus and Alepidea (Apiaceae subfamily Saniculoideae). Biochem Syst Ecol 36:724–729

    Article  CAS  Google Scholar 

  • Parejo I, Viladomat F, Bastida J, Schmeda-Hirschmann G, Burillo J, Codina C (2004) Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) Waste. J Agric Food Chem 52:1890–1897

    Article  PubMed  CAS  Google Scholar 

  • Parnham MJ, Kesselring K (1985) Rosmarinic acid. Drugs Fut 10:756–757

    Google Scholar 

  • Petersen MS (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877–2881

    Article  CAS  Google Scholar 

  • Petersen M (1997) Cytochrome P-450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172

    Article  CAS  Google Scholar 

  • Petersen M (2003) Cinnamic acid 4-hydroxyase from cell cultures of the hornwort Anthoceros agrestis. Planta 217:96–101

    PubMed  CAS  Google Scholar 

  • Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501–504

    Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14

    Article  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Hans J, Matern U (2010) Biosynthesis of phenylpropanoids and related compounds. In: Wink M (ed) Annual plant reviews—Biochemistry of plant secondary metabolism. Wiley-Blackwell, Chichester, pp 182–257

    Chapter  Google Scholar 

  • Ravn H, Pedersen MF, Andary JBC, Anthoni U, Christophersen C, Nielsen PH (1994) Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40:51–61

    Article  Google Scholar 

  • Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137:287–291

    Article  CAS  Google Scholar 

  • Rebey IB, Bourgou S, Ben Slimen Debez I, Karoui IJ, Hamrouni Sellami I, Msaada K, Limam F, Marzouk B (2012) Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol 5:2827–2836

    Article  CAS  Google Scholar 

  • Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  PubMed  CAS  Google Scholar 

  • Rubio B, Diaz AM, Martin T, Zaragoza F, Villaescusa L (1992) Phenolic compounds in Scolymus hispanicus L. Ars Pharm 33:462–465

    CAS  Google Scholar 

  • Sander M, Petersen M (2011) Distinct substrate specificities and unusual substrate flexibilities of two hydroxycinnamoyltransferases, rosmarinic acid synthase and hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase, from Coleus blumei Benth. Planta 233:1157–1171

    Article  PubMed  CAS  Google Scholar 

  • Satake T, Kamiya K, Saiki Y, Hama T, Fujimoto Y, Kitanaka S, Kimura Y, Uzawa J, Endang H, Umar M (1999) Studies on the constituents of fruits of Helicteres isora L. Chem Pharm Bull 47:1444–1447

    Article  CAS  Google Scholar 

  • Scarpati ML, Oriente G (1958) Isolamento e costituzione dell’acido rosmarinico (dal rosmarinus off.). Ric Sci 28:2329–2333

    CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Song J, Wang Z (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36:939–952

    Article  PubMed  CAS  Google Scholar 

  • Souza SMM, Moraes CSS, Couto RO, Gil ES, Fonseca YM, Conceicao EC (2012) In vitro antioxidant activity of Apeiba tibourbou Aubl. (Tiliaceae): a powerful antioxidant source of rosmarinic acid. J Pharm Res 5:1414–1417

    Google Scholar 

  • St. Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Rec Adv Phytochem 34:285–316

    Article  CAS  Google Scholar 

  • Štěrbová D, Vlček J, Kubáň V (2006) Capillary zone electrophoretic determination of phenolic compounds in chess (Bromus inermis L.) plant extracts. J Sep Sci 29:308–313

    Article  PubMed  CAS  Google Scholar 

  • Szabo E (1994) Lokalisation, Transport und Akkumulation von Rosmarinsäure in Zellkulturen von Coleus blumei. Dissertation, Heinrich-Heine-Universität Düsseldorf

  • Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18:485–489

    Article  CAS  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431–434

    Article  CAS  Google Scholar 

  • Takeda R, Hasegawa J, Shinozaki M (1990) The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, Anthocerotae (hornworts). Tetrahedron Lett 31:4159–4162

    Article  CAS  Google Scholar 

  • Tanaka T, Morimoto S, Nonaka G, Nishioka I, Yokozawa T, Chung HY, Oura H (1989) Magnesium and ammonium-potassium lithospermates B, the active principles having a uremia-preventive effect from Salvia miltiorrhiza. Chem Pharm Bull 37:340–344

    Article  CAS  Google Scholar 

  • Tanaka T, Nishimura A, Kouno I, Nonaka G, Young TJ (1996) Isolation and characterization of yunnaneic acids A-D, four novel caffeic acid metabolites from Salvia yunnanensis. J Nat Prod 59:843–849

    Article  CAS  Google Scholar 

  • Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR, Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    Article  PubMed  CAS  Google Scholar 

  • Trennheuser F (1992) Phytochemische Untersuchung und in vitro Kultur ausgewählter Vertreter der Anthocerotopsida. Dissertation, University of Saarbrücken

  • Trennheuser F, Burkhard G, Becker H (1994) Anthocerodiazonin, an alkaloid from Anthoceros agrestis. Phytochemistry 37:899–903

    Article  CAS  Google Scholar 

  • Trute A, Nahrstedt A (1996) Separation of rosmarinic acid enantiomers by three different chromatographic methods (HPLC, CE, GC) and the determination of rosmarinic acid in Hedera helix L. Phytochem Anal 7:204–208

    Article  CAS  Google Scholar 

  • Tsumbu CN, Deby-Dupont G, Tits M, Angenot L, Frederich M, Kohnen S, Mouithys-Mickalad A, Serteyn D, Franck T (2012) Polyphenol content and modulatory activities of some tropical dietary plant extracts on the oxidant activities of neutrophils and myeloperoxidase. Int J Mol Sci 13:628–650

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich B, Wiesner W, Arens H (1985) Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 293–303

    Chapter  Google Scholar 

  • Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9:1–17

    Article  CAS  Google Scholar 

  • Velazquez Fiz MP, Diaz Lanza AM, Fernandez Matellano L (2000) Polyphenolic compounds from Plantago lagopus L. Z Naturforsch 55c:877–880

    Google Scholar 

  • Vilnet AA, Konstantinova NA, Troitsky AV (2009) Genosystematics and new insight into the phylogeny and taxonomy of liverworts. Mol Biol 43:783–793

    Article  CAS  Google Scholar 

  • Vogelsang K, Schneider B, Petersen M (2006) Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-d-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta 223:369–373

    Article  PubMed  CAS  Google Scholar 

  • Wang BQ (2010) Salvia miltiorrhiza: chemical and pharmacological review of a medicinal plant. J Med Plants Res 4:2813–2820

    CAS  Google Scholar 

  • Wang FY, Li D, Han ZC, Gao HY, Wu LJ (2007) Chemical constituents of Rhodiola rosea and inhibitory effect on UV-induced A375–S2 cell death. Shenyang Yaoke Daxue Xuebao 24(280–283):287

    Google Scholar 

  • Weitzel C, Petersen M (2010) Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L. Planta 232:731–742

    Article  PubMed  CAS  Google Scholar 

  • Weitzel C, Petersen M (2011) Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L. Phytochemistry 72:572–578

    Article  PubMed  CAS  Google Scholar 

  • Wölbling RH, Leonhardt K (1994) Local therapy of Herpes simplex with dried extracts from Melissa officinalis. Phytomedicine 1:25–31

    Article  PubMed  Google Scholar 

  • Wu B, Szymanski W, Wybenga GG, Heberling MM, Bartsch S, De Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, Janssen DB (2012) Mechanism-inspired engineering of phenylalanine aminomutase for enhanced β-regioselective asymmetric amination of cinnamates. Angew Chem Int Ed Engl 51:482–486

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plantarum 137:1–9

    Article  CAS  Google Scholar 

  • Yamamura Y, Ogihara Y, Mizukami H (2001) Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep 2:655–662

    Google Scholar 

  • Yazaki K, Ogawa A, Tabata M (1995) Isolation and characterization of two cDNAs encoding 4-coumarate:CoA ligase in Lithospermum cell cultures. Plant Cell Physiol 36:1319–1329

    PubMed  CAS  Google Scholar 

  • Yazaki K, Kataoka M, Honda G, Severin K, Heide L (1997) cDNA cloning and gene expression of phenylalanine ammonia-lyase in Lithospermum erythrorhizon. Biosci Biotechnol Biochem 61:1995–2003

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Fuchigami M, Nagao T, Okabe H, Matsunaga K, Takata J, Karube Y, Tsuchihashi R, Kinjo J, Mihashi K, Fujioka T (2005) Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol Pharm Bull 28:173–175

    Article  PubMed  CAS  Google Scholar 

  • Yun YS, Satake M, Katsuki S, Kunugi A (2004) Phenylpropanoid derivatives from edible canna, Canna edulis. Phytochemistry 65:2167–2171

    Article  PubMed  CAS  Google Scholar 

  • Zadra M, Piana M, Faccim de Brum T, Augusti Boligon A, Borba de Freitas R, Mansur Machado M, Terra Stefanello S, Antunes Soares FA, Linde Athayde M (2012) Antioxidant activity and phytochemical composition of the leaves of Solanum guaraniticum A. St.-Hil. Molecules 17:12560–12574

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64:585–586

    Article  CAS  Google Scholar 

  • Zhang J, Wang ZW, Mi Q (2011) Phenolic compounds from Canna edulis Ker residue and their antioxidant activity. Food Sci Technol-LEB 44:2091–2096

    CAS  Google Scholar 

  • Zhao SJ, Hu ZB, Liu D, Leung FCC (2006) Two divergent members of 4-coumarate: coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study. J Integr Plant Biol 48:1355–1364

    Article  CAS  Google Scholar 

  • Zheng Q, Sun Z, Zhang X, Yuan J, Wu H, Yang J, Xu X (2012) Clerodendranoic acid, a new phenolic acid from Clerodendranthus spicatus. Molecules 17:13656–13661

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Li Y, Yang J, Zuo L, Zhang D (2008) Studies on chemical constituents of Sarcandra glabra. Zhongguo Zhongyao Zazhi 33:155–157

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Petersen.

Additional information

Exactly 25 years ago I made my first acquaintance with a molecule named rosmarinic acid occurring in medicinal plants of the families Lamiaceae and Boraginaceae. At that time I did not expect that such a rather plain molecule with a rather restricted occurrence would accompany me through the rest of my research carrier. At this occasion, I want to thank all diploma and doctoral students, technical staff members and collaborators in other laboratories listed below as well as numerous students in lab courses for their engagement in rosmarinic acid research—and of course Prof. Dr. August Wilhelm Alfermann who directed my interest to rosmarinic acid and helped me in every possible way. Many thanks to Anja Berger, Anke Kunzendorf, Anne Thelen (Passmann), Anne-Sarah Döring, Barbara Karwatzki, Beate Rosenberg, Bettina Kempin, Claudia Gertlowski, Cordula Strecker, Corinna Weitzel, David Eberle, Dominique Van der Straeten, Elek Szabo, Elisabeth Fuss, Elisabeth Szabo (Häusler), Elke Bauerbach, Ellen Vetter, Eva Posthoff, Jennifer Robinson, Jörg Metzger, Juliane Meinhard, Katharina Vogelsang, Kerstin Lahrmann, Kyung Hee Kim, Maria Clemens, Maria Koczor, Marie-Claire Badouin, Martina Heim, Soheil Pezeshki, Stefan Biastoff, Stefan Wolters, Stephanie Hücherig, Susanne Paradies, Ute Hegener, Verena Janiak, Virginie Berghoff, Yana Abdullah and all those I might have forgotten here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, M. Rosmarinic acid: new aspects. Phytochem Rev 12, 207–227 (2013). https://doi.org/10.1007/s11101-013-9282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9282-8

Keywords

Navigation