Skip to main content
Log in

Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Lemon balm (Melissa officinalis, Lamiaceae) is a well-known medicinal plant. Amongst the biologically active ingredients are a number of phenolic compounds, the most prominent of which is rosmarinic acid. To obtain better knowledge of the biosynthesis of these phenolic compounds, two enzymes of the general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL) and 4-coumarate:coenzyme A-ligase (4CL), were investigated in suspension cultures of lemon balm. MoPAL1 and Mo4CL1 cDNAs were cloned and heterologously expressed in Escherichia coli and the enzymes characterised. Expression analysis of both genes showed a correlation with the enzyme activities and rosmarinic acid content during a cultivation period of the suspension culture. Southern-blot analysis suggested the presence of most probably two gene copies in the M. officinalis genome of both PAL and 4CL. The genomic DNA sequences of MoPAL1 and Mo4CL1 were amplified and sequenced. MoPAL1 contains one phase 2 intron of 836 bp at a conserved site, whilst Mo4CL1 was devoid of introns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4CL:

4-Coumarate:CoA ligase

C4H:

Cinnamic acid 4-hydroxylase

CoA:

Coenzyme A

CSPD:

Disodium 3-(4-methoxyspiro{l,2-dioxetane-3,2′-(5′-chloro)tricyclo[3.3.1.13,7]decan}-4-yl) phenylphosphate

DTT:

Dithiothreitol

DW:

Dry weight

Orf:

Open reading frame

PAL:

Phenylalanine ammonia-lyase

RA:

Rosmarinic acid

SSC:

Saline sodium citrate buffer

References

  • Becker-André M, Schulze-Lefert P, Hahlbrock K (1991) Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate:CoA ligase genes in potato. J Biol Chem 266:8551–8559

    PubMed  Google Scholar 

  • Berger A, Meinhard J, Petersen M (2006) Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 224:1503–1510

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carnat AP, Carnat A, Fraisse D, Lamaison JL (1998) The aromatic and polyphenolic composition of lemon balm (Melissa officinalis L. subsp. officinalis) tea. Pharm Acta Helv 72:301–305

    Article  CAS  Google Scholar 

  • Chang A, Lim MH, Lee SW, Robb EJ, Nazar RN (2008) Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. J Biol Chem 283:33591–33601

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch W (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol 12:367–383

    Article  CAS  Google Scholar 

  • Cukovic D, Ehlting J, VanZiffle JA, Douglas CJ (2001) Structure and evolution of 4-coumarate:coenzyme A ligase (4CL) gene families. Biol Chem 382:645–654

    Article  CAS  PubMed  Google Scholar 

  • De Eknamkul W, Ellis BE (1987) Tyrosine aminotransferase: the entry-point enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26:1941–1946

    Article  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Eberle D, Ullmann P, Werck-Reichhart D, Petersen M (2009) cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Mol Biol 69:239–253

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionary divergent classes in angiosperms. Plant J 19:9–20

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Shin JJK, Douglas CJ (2001) Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains. Plant J 27:455–465

    Article  CAS  PubMed  Google Scholar 

  • Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291–297

    CAS  PubMed  Google Scholar 

  • Engler-Blum G, Meier M, Frank J, Müller GA (1993) Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210:235–244

    Article  CAS  PubMed  Google Scholar 

  • Fecka I, Turek S (2007) Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, Melissa, and sage. J Agric Food Chem 55:10908–10917

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Simon J, Lewinsohn E, Pichersky E (2002) Peltate glandular trichomes of Ocimum basilicum L. (Sweet Basil) contain high levels of enzymes involved in the biosynthesis of phenylpropenes. J Herbs Spices Med Plants 9:189–195

    Article  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Häusler E, Petersen M, Alfermann AW (1991) Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Z Naturforsch 46c:371–376

    Google Scholar 

  • Heitz A, Carnat A, Fraisse D, Carnat AP, Lamaison JL (2000) Luteolin 3′-glucuronide, the major flavonoid from Melissa officinalis subsp. officinalis. Fitotherapia 71:201–202

    Article  CAS  Google Scholar 

  • Huang B, Yi B, Duan Y, Sun L, Yu X, Guo J, Chen W (2008) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35:601–612

    Article  CAS  PubMed  Google Scholar 

  • Joos HJ, Hahlbrock K (1992) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Eur J Biochem 204:621–629

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–323

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ellis BE (2001) The phenylalanine ammonia-lyase gene family in raspberry: structure, expression, and evolution. Plant Physiol 127:230–239

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ellis BE (2003) 4-Coumarate:CoA ligase gene family in Rubus idaeus: cDNA structures, evolution, and expression. Plant Mol Biol 31:327–340

    Article  Google Scholar 

  • Lee SW, Robb J, Nazar RN (1992) Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum). J Biol Chem 267:11824–11830

    CAS  PubMed  Google Scholar 

  • Lindermayr C, Möllers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J (2002) Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. Eur J Biochem 269:1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Lozoya E, Hoffmann H, Douglas C, Schulz W, Scheel D, Hahlbrock K (1988) Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley. Eur J Biochem 176:661–667

    Article  CAS  PubMed  Google Scholar 

  • Mahesh V, Rakotomalala JJ, Gal LL, Vigne H, de Kochko A, Hamon S, Noirot M, Campa C (2006) Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep 25:986–992

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Takeuchi A, Hayatsu M, Kondo S (1994) Molecular cloning of phenylalanine ammonia-lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probe. Theor Appl Genet 89:671–675

    Article  CAS  Google Scholar 

  • Matsuno M, Nagatsu A, Ogihara Y, Ellis BE, Mizukami H (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224

    Article  CAS  PubMed  Google Scholar 

  • Mazzanti G, Battinelli L, Pompeo C, Serrilli AM, Rossi R, Sauzullo I, Mengoni F, Vullo V (2008) Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Nat Prod Res 23:1433–1440

    Article  Google Scholar 

  • Mulkens A, Kapetanidis I (1987) Flavonoids from leaves of Melissa officinalis L. (Lamiaceae). Pharm Acta Helv 62:19–22

    CAS  PubMed  Google Scholar 

  • Murin A (1997) Karyotaxonomy of some medicinal and aromatic plants. Thaiszia 7:75–88

    Google Scholar 

  • Parnham MJ, Kesselring K (1985) Rosmarinic acid. Drugs Future 10:756–757

    Google Scholar 

  • Patora J, Klimek B (2002) Flavonoids from lemon balm (Melissa officinalis L., Lamiaceae). Acta Pol Pharm 59:139–143

    CAS  PubMed  Google Scholar 

  • Petersen M (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877–2881

    Article  CAS  Google Scholar 

  • Petersen M (1994) Coleus spp.: in vitro culture and the production of forskolin and rosmarinic acid. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, medicinal and aromatic plants VI. Springer, Berlin, pp 69–92

    Google Scholar 

  • Petersen M (1997) Cytochrome P-450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172

    Article  CAS  Google Scholar 

  • Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501–504

    Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14

    Article  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  CAS  PubMed  Google Scholar 

  • Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Scarpati ML, Oriente G (1958) Isolamento e costituzione dell’acido rosmarinico (dal rosmarinus off.). Ric Sci 28:2329–2333

    CAS  Google Scholar 

  • Schneider K, Hövel K, Witzel K, Hamberger B, Schomburg D, Kombrink E, Stuible HP (2003) The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase. Proc Natl Acad Sci USA 100:8601–8606

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang Z (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36:939–952

    Article  CAS  PubMed  Google Scholar 

  • Strid A (1983) IOPB chromosome number reports LXXVIII. Taxon 32:138–140

    Google Scholar 

  • Stuible HP, Büttner D, Ehlting J, Hahlbrock K, Kombrink E (2000) Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes. FEBS Lett 467:117–122

    Article  CAS  PubMed  Google Scholar 

  • Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in in vitro-cultures of Coleus blumei. Plant Cell Rep 18:485–489

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  CAS  PubMed  Google Scholar 

  • Wölbling RH, Leonhardt K (1994) Local therapy of herpes simplex with dried extracts from Melissa officinalis. Phytomedicine 1:25–31

    Google Scholar 

  • Xu F, Cai R, Cheng S, Du H, Wang Y, Cheng S (2008) Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 7:721–729

    Google Scholar 

  • Yazaki K, Ogawa A, Tabata M (1995) Isolation and characterization of two cDNAs encoding 4-coumarate:CoA ligase in Lithospermum cell cultures. Plant Cell Physiol 36:1319–1329

    CAS  PubMed  Google Scholar 

  • Yazaki K, Kataoka M, Honda G, Severin K, Heide L (1997) cDNA cloning and gene expression of phenylalanine ammonia-lyase in Lithospermum erythrorhizon. Biosci Biotechnol Biochem 61:1995–2003

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Chiang VL (1997) Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol 113:65–74

    Article  CAS  PubMed  Google Scholar 

  • Zhao SJ, Hu ZB, Liu D, Leung FCC (2006) Two divergent members of 4-coumarate:coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study. J Integr Plant Biol 48:1355–1364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Petersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1.13 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitzel, C., Petersen, M. Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L.. Planta 232, 731–742 (2010). https://doi.org/10.1007/s00425-010-1206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1206-x

Keywords

Navigation