Skip to main content
Log in

Metabolomics technology to phenotype resistance in barley against Gibberella zeae

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The mechanisms of resistance in barley to fusarium head blight (FHB), caused by Gibberella zeae are complex. Metabolomics technology was explored to phenotype resistance. Spikelets of barley genotypes with contrasting levels of resistance to FHB, mock inoculated or with the pathogen, were extracted with aqueous methanol and the metabolites were analyzed using liquid chromatography and hybrid mass spectrometry. Peaks were de-convoluted using XCMS and annotated using CAMERA and IntelliXtract bioinformatics tools. A t-test, of a total of 1608 purified peaks, selected 626 metabolites with significant treatment effects, of which 161 were identified as resistance related (RR) metabolites. A total of 53 metabolites, that are RR or pathogenicity related (PR), were assigned with putative compound names. These mainly belonged to three metabolic pathways: fatty acid (jasmonic acid, methyl jasmonate, 9,10- dihydro-isojasmonate, linolenic acid, linoleic acid, traumatic acid), phenylpropanoid (p-coumaric acid, caffeyl alcohol, dimethoxy-4-phenylcoumarin, rosmarinic acid, diphyllin, 5-methoxypodophyllotoxin) and flavonoid (naringenin, catechin, quercetin, and alpinumisoflavone). A few PR/RR metabolites significantly reduced mycelial growth of G. zeae in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant Pathology. London: Elsevier Academic.

    Google Scholar 

  • Allwood, J. W., Ellis, D. I., Hield, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. The Plant Journal, 46, 351–368.

    Article  PubMed  CAS  Google Scholar 

  • Balbi, V., & Devoto, A. (2008). Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytologist, 177, 301–318.

    Article  PubMed  CAS  Google Scholar 

  • Bedair, M., & Sumner, L. W. (2008). Current and emerging mass spectrometry technologies for metabolomics. Trends in Analytical Chemistry, 27, 238–250.

    Article  CAS  Google Scholar 

  • Bollina, V., Kumaraswamy, G. K., Kushalappa, A. C., Choo, T. M., Dion, Y., Rioux, S., et al. (2010). Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Molecular Plant Pathology, 11(6), 769–782.

    PubMed  CAS  Google Scholar 

  • Boutigny, A. L., Barreau, C., Atanasova-penichon, V., Verdal-bonnin, M., Pinson-gadais, L., & Richard-forget, F. (2009). Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycological Research, 113, 746–753.

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding, 128, 1–26.

    Article  CAS  Google Scholar 

  • Bushnell, W. M. R., Hazen, B. E., & Pritsch, C. (2003). Histology and physiology of Fusarium head blight. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight in wheat and barley (pp. 44–83). St Paul: American Phytopathological Society.

    Google Scholar 

  • Cho, J. Y., Choi, J. G., Son, W. S., Jang, K. S., Lim, H. K., Lee, S. O., et al. (2007). Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Management Science, 63, 935–940.

    Article  PubMed  CAS  Google Scholar 

  • Choo, T. M., Vigier, B., Shen, Q. Q., Martin, R. A., Ho, K. M., & Savard, M. (2004). Barley traits associated with resistance to Fusarium head blight and deoxynivalenol accumulation. Phytopathology, 94, 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  • de la Penna, R. C., Smith, K. P., Cappettini, F., Muehlbauer, G. J., Gallo-Meagher, M., Dill-Macky, R., et al. (1999). Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theoretical and Applied Genetics, 99, 561–569.

    Article  Google Scholar 

  • de Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.

    Article  PubMed  Google Scholar 

  • Eggert, K., Hollmann, J., Hiller, B., Kruse, H. P., Rawel, H. M., & Pawelzik, E. (2010). Effects of Fusarium infection on the phenolics in emmer and naked barley. Journal of Agricultural Food Chemistry, 58, 3043–3049.

    Article  CAS  Google Scholar 

  • Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small molecule complement of biological systems. Analytical Chemistry, 81, 6656–6667.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E. E. (2007). Jasmonate perception machines. Nature, 448, 659–660.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Sumner, L. W., Ward, J., Dickerson, J., Lange, M. B., Lane, G., et al. (2007). Minimum reporting standards for plant biology context in metabolomics studies. Metabolomics, 3, 195–201.

    Article  CAS  Google Scholar 

  • Geddes, J., Eudes, F., Laroche, A., & Selinger, L. B. (2008). Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics, 8, 545–554.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Golkari, S., Gilbert, J., Prasher, S., & Procunier, J. D. (2007). Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ specific and differentially expressed genes. Plant Biotechnology Journal, 5, 38–49.

    Article  PubMed  CAS  Google Scholar 

  • Hamberg, M. (1999). An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids, 34, 1131–1142.

    Article  PubMed  CAS  Google Scholar 

  • Hamzehzarghani, H., Kushalappa, A. C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., et al. (2005). Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiology and Molecular Plant Pathology, 66, 119–133.

    Article  CAS  Google Scholar 

  • Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A., Dion, Y., Rioux, S., et al. (2008a). Metabolic profiling coupled with statistical analyses for potential high throughput screening of quantitative resistance to fusarium head blight in wheat cultivars. Canadian Journal of Plant Pathology, 30, 24–36.

    Article  CAS  Google Scholar 

  • Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A. C., Mamer, O., & Somers, D. (2008b). Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance against fusarium head blight. Canadian Journal of Plant Science, 88, 789–797.

    Google Scholar 

  • Joffe, A. (1986). In A. Joffe (Ed.), Fusarium species: Their biology and toxicology (pp. 225–292). New York: Wiley.

    Google Scholar 

  • Johnson, D. E. (1998). Applied multivariate methods for data analysts. North Scituate, MA: Duxbury Press.

  • Kato, T., Yamaguchi, Y., Abe, N., Uyehara, T., Namai, T., Kodama, M., et al. (1985). Structures and synthesis of unsaturated trihydroxy C18 fatty acids in rice plant suffering from rice blast disease. Tetrahedron Letters, 26, 2357–2360.

    Article  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.

    Article  PubMed  Google Scholar 

  • Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. Molecular Plant-Microbe Interactions, 18, 1318–1324.

    Article  PubMed  CAS  Google Scholar 

  • Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48, 888–896.

    Google Scholar 

  • Lijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54, 949–962.

    Article  Google Scholar 

  • Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., et al. (2006). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry, 78, 2113–2120.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, F., Yonekura-Sakakibara, K., Niida, R., Kuromori, T., Shinozaki, K., & Saito, K. (2009). MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. The Plant Journal, 57, 555–577.

    Article  PubMed  CAS  Google Scholar 

  • McKeehen, J. D., Busch, R. H., & Fulcher, R. G. (1999). Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Journal of Agricultural Food Chemistry, 47, 1476–1482.

    Article  CAS  Google Scholar 

  • Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous JA level, PR gene expression, and host resistance to fungal infection. Molecular Plant Microbe Interaction, 19, 113–127.

    Article  Google Scholar 

  • Mesfin, K. P., Smith, K. P., Dill-Macky, R., Evans, C., Waugh, R., Gustus, C., et al. (2003). Quantitative traits loci for Fusarium head blight resistance in barley detected in a two-rowed by six rowed population. Crop Science, 43, 307–318.

    Article  CAS  Google Scholar 

  • Mesterhazy, A. (1995). Types and components of resistance to Fusarium head blight in wheat. Plant Breeding, 114, 377–386.

    Article  Google Scholar 

  • Mizutani, A., Miki, N., Yukioka, H., Tamura, H., & Masuko, M. (1996). A possible mechanism of control of rice blast disease by a novel alkoxyiminoacetamide fungicide, SSF126. Phytopathology, 86, 295–300.

    Article  CAS  Google Scholar 

  • Moco, S., Bino, R., de Vos, R. C. H., & Vervoort, J. (2007). Metabolomics technologies and metabolite identification. Trends in Analytical Chemistry, 26, 855–866.

    Article  CAS  Google Scholar 

  • Naoumkina, M. A., Zhao, Q., Gallego-giraldo, L., Dai, X., Zhao, P. X., & Dixon, R. A. (2010). Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11(6), 829–846.

    PubMed  CAS  Google Scholar 

  • Nirenberg, H. (1981). A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany, 59, 1599–1609.

    Google Scholar 

  • Paranidharan, V., Abu-Nada, Y., Hamzehzarghani, H., Kushalappa, A. C., Mamer, O., Dion, Y., et al. (2008). Resistance related metabolites in wheat against Fusarium graminearum and virulence factor, DON. Botany, 86, 1168–1179.

    Article  CAS  Google Scholar 

  • Poppenberger, F., Berthiller, D., Lucyshyn, T., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278, 47905–47914.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, A., & Mansfield, S. (2009). Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and NIR-based prediction modeling. The Plant Journal, 58, 706–714.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, N., & Fernie, A. R. (2006). Plant metabolomics: towards biological function and mechanism. Trends in Plant Science, 11, 508–516.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab by Gibberella zeae. Phytopathology, 53, 831–838.

    Google Scholar 

  • Siranidou, E., Kang, Z., & Buchenauer, H. (2002). Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to Fusarium head blight. Journal of Phytopathology, 150, 200–208.

    Article  Google Scholar 

  • Smith, A. C., Elizabeth, J. W., Grace, O., Ruben, A., & Gary, S. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Steffenson, B. J. (2003). Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 241–295). St. Paul: APS.

    Google Scholar 

  • Sumner, W. L., Mendes, P., & Richard, A. D. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836.

    Article  PubMed  CAS  Google Scholar 

  • Tamogami, S., Rakwal, R., & Kodama, O. (1997). Phytoalexin production by amino acid conjugates of JA through induction of naringenin 7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Letters, 401, 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Tautenhahn, R., Böttcher, C., & Neumann, S. (2007). Annotation of LC/ESI-MS mass signals. Proceedings of BIRD 2007 - 1st International Conference on Bioinformatics Research and Development, Springer LNBI 4414.

  • Tohge, T., & Fernie, A. R. (2009). Web-based resources for mass-spectrometry-based metabolomics: A user’s guide. Phytochemistry, 70, 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran, P. (2008). Fungal pathogenesis in plants and crops. Boca Raton: CRC.

    Google Scholar 

  • Vijayan, P., Shockey, J., Lévesque, C. A., Cook, R. J., & Browse, J. (1998). A role for jasmonate in pathogen defense of Arabidopsis. PNAS, 95, 7209–7214.

    Article  PubMed  CAS  Google Scholar 

  • Vorst, O., de Vos, C. H. R., Lommen, A., Staps, R. V., Visser, R. G. F., Bino, R. J., et al. (2005). A non-directed approach to the differential analysis of multiple LC-MS derived metabolic profiles. Metabolomics, 1, 169–180.

    Article  CAS  Google Scholar 

  • Walters, D., Raynor, L., Mitchell, A., Walker, R., & Walker, K. (2004). Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia, 157, 87–90.

    Article  PubMed  Google Scholar 

  • Yara, A., Yaeno, T., Montillet, J. L., Hasegawa, M., Seo, S., Kusumi, K., et al. (2008). Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxylinoleic acid. Biochemical and Biophysical Research Communications, 370, 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, B. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zhang, L., & Xing, D. (2008). Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiology, 49, 1092–1111.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ), Centre de recherche sur les grains inc. (CEROM), and the Fédération des producteurs de porc du Québec (FPPQ), Québec, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajjamada C. Kushalappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumaraswamy, G.K., Bollina, V., Kushalappa, A.C. et al. Metabolomics technology to phenotype resistance in barley against Gibberella zeae . Eur J Plant Pathol 130, 29–43 (2011). https://doi.org/10.1007/s10658-010-9729-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9729-3

Keywords

Navigation