Skip to main content
Log in

Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  Google Scholar 

  • Alagawany M, El-Hack ME, Farag MR, Gopi M, Karthik K, Malik YS, Dhama K (2017) Rosmarinic acid: modes of action medicinal values and health benefits. Anim Health Res Rev 18:1–10. https://doi.org/10.1017/S1466252317000081

    Article  Google Scholar 

  • Al-Sereiti MR, Abu-Amer KM, Sen P (1999) Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 37:124–130

    PubMed  CAS  Google Scholar 

  • Ankur K, MT H, Hong C, SW P, GA J, Karen B (2012) Dietary intake of rosmarinic acid by ApcMin mice, a model of colorectal carcinogenesis: levels of parent agent in the target tissue and effect on adenoma development. Mol Nutr Food Res 56(5):775–783. https://doi.org/10.1002/mnfr.201100617

    Article  CAS  Google Scholar 

  • Anusuya C, Manoharan S (2011) Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz (a) anthracene-induced hamster buccal pouch carcinogenesis. J Environ Pathol Toxicol Oncol 30(3):199–211

    Article  PubMed  CAS  Google Scholar 

  • Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369

    Article  PubMed  CAS  Google Scholar 

  • Astani A, Reichling J, Schnitzler P (2012) Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy 58(1):70–77

    Article  PubMed  CAS  Google Scholar 

  • Barberini S, Savona M, Raffi D, Leonardi M, Pistelli L, Stochmal A, Vainstein A, Pistelli L, Ruffoni B (2013) Molecular cloning of SoHPPR encoding a hydroxyphenylpyruvate reductase, and its expression in cell suspension cultures of Salvia officinalis. Plant Cell Tissue Organ Cult 114:131–138

    Article  CAS  Google Scholar 

  • Bauer N, Kiseljak D, Jelaska S (2009) The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plant 53:650–656

    Article  CAS  Google Scholar 

  • Bauer N, Vuković R, Likić S, Jelaska S (2015) Potential of different Coleus blumei tissues for rosmarinic acid production. Food Technol Biotechnol 53(1):3–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhatt R, Mishra N, Bansal PK (2013) Phytochemical, pharmacological and pharmacokinetics effects of rosmarinic acid. J Pharm Sci Innov 2:28–34

    Article  CAS  Google Scholar 

  • Bloch SE, Schmidt-Dannert C (2014) Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli. Chembiochem 15:2393–2401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10(4):221–247

    Article  CAS  Google Scholar 

  • Brijwal L, Tamta S (2015) Agrobacterium rhizogenes mediated hairy root induction in endangered Berberis aristata DC. SpringerPlus 4:443. https://doi.org/10.1186/s40064-015-1222-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217

    Article  PubMed  CAS  Google Scholar 

  • Cao W, Hu C, Wu L, Xu L, Jiang W (2016) Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J Pharmacol Sci 132(2):131–137

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia N, Mishra Y (2017) 11—novel technologies for plant functional genomics. In: Current developments in biotechnology and bioengineering. Elsevier, pp 241–257. https://doi.org/10.1016/B978-0-444-63661-4.00011-6

  • Fattahi M, Nazerib V, Torras-Claveria L, Sefidkond F, Cusido RM, Zamani Z, Palazon J (2013) A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss. Ind Crop Prod 50:256–263

    Article  CAS  Google Scholar 

  • Ferrández A, Prescott S, Burt RW (2003) COX-2 and colorectal cancer. Curr Pharm Des 9(27):2229–2251

    Article  PubMed  Google Scholar 

  • Firuzi O, Miri R, Asadollahi M, Eslami S, Jassbi AR (2013) Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven Salvia species from Iran. Iran J Pharm Res 12:801–810

    PubMed  PubMed Central  CAS  Google Scholar 

  • Françoise B, Hossein S, Halimeh H, Zahra NF (2007) Growth optimization of Zataria multiflora Boiss. tissue cultures and rosmarinic acid production improvement. Pak J Biol Sci 10:3395–3399

    Article  PubMed  Google Scholar 

  • Furtado MA, de Almeida LC, Furtado RA, Cunha WR, Tavares DC (2008) Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 657(2):150–154

    Article  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2004) Rosmarinic acid production by Lavandula vera MM cell suspension: the effect of temperature. Biotechnol Lett 26:855–856

    Article  PubMed  CAS  Google Scholar 

  • Georgiev M, Kuzeva S, Pavlov A, Kovacheva E, Ilieva M (2006) Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl sulfate. Z Naturforsch C 61:241–244

    Article  PubMed  CAS  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  PubMed  CAS  Google Scholar 

  • Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The Cox-2/PGE2 pathway: key roles in the hallmark of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386

    Article  PubMed  CAS  Google Scholar 

  • Grzegorczyk I, Królicka A, Wysokińska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch C 61(5–6):351–356

    Article  PubMed  CAS  Google Scholar 

  • Hakkim FL, Kalyani S, Essa M, Girija S, Song H (2011) Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Int J Biol Med Res 2:1070–1074

    Google Scholar 

  • Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W (2015) Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Dev Ther 9:2695

    CAS  Google Scholar 

  • Han YH, Kee JY, Hong SH (2018) Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front Pharmacol 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Harder B-J, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37

    Article  PubMed  CAS  Google Scholar 

  • Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, Wargent JJ, Espley RV (2018) Solar UV light regulates flavonoid metabolism in apple (Malus × domestica). Plant Cell Environ 41(3):675–688. https://doi.org/10.1111/pce.13125

    Article  PubMed  CAS  Google Scholar 

  • Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40(7):4301–4310. https://doi.org/10.1007/s11033-013-2517-3

    Article  PubMed  CAS  Google Scholar 

  • Huang LD, Van SJ (2002) Salvia chamelaeagnea can be micropropagated and its callus induced to produce rosmarinic acid. S Afr J Bot 68:177–180

    Article  CAS  Google Scholar 

  • Hücherig S, Petersen M (2013) RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy root cultures of Coleus blumei. Plant Cell Tissue Organ Cult 113:375–385

    Article  CAS  Google Scholar 

  • Irvani N, Solouki M, Omidi M, Zare AR, Shahnazi S (2010) Callus induction and plant regeneration in Dorem ammoniacum D., an endangered medicinal plant. Plant Cell Tissue Organ Cult 100:293–299

    Article  Google Scholar 

  • Ito H, Miyazaki T, Ono M, Sakurai H (1998) Antiallergic activities of Rabdosiin and its related compounds: chemical and biochemical evaluations. Bioorg Med Chem 6:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Kosta S, Tiwari A (2010) Ayurveda and urinary tract infection. J Young Pharm 2:337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang AH, Kim TH, Kim GD, Kim JE, Kim HJ, Kim SS, Jin YH, Park YS, Park CS (2011) Rosmarinic acid attenuates 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. Int Immunopharmacol 11:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Jha UC, Bhat JS, Patil BS, Hossain F, Barh D (2015) Functional genomics: applications in plant science. In: PlantOmics: the omics of plant science. Springer, pp 65–111. https://doi.org/10.1007/978-81-322-2172-2_4

  • Jiang J, Bi H, Zhuang Y, Liu S, Liu T, Ma Y (2016) Engineered synthesis of rosmarinic acid in Escherichia coli resulting production of a new intermediate, caffeoyl-phenyllactate. Biotechnol Lett 38(1):81–88

    Article  PubMed  CAS  Google Scholar 

  • Karam NS, Jawad FM, Arikat NA, Shibli RA (2003) Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue Organ Cult 73:117–121

    Article  CAS  Google Scholar 

  • Karmokar A, Marczylo TH, Cai H, Steward WP, Gescher AJ, Brown K (2012) Dietary intake of rosmarinic acid by ApcMin mice, a model of colorectal carcinogenesis: levels of parent agent in the target tissue and effect on adenoma development. Mol Nutr Food Res 56(5):775–783

    Article  PubMed  CAS  Google Scholar 

  • Karthik D, Viswanathan P, Anuradha CV (2011) Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J Cardiovasc Pharmacol 58:514–521

    Article  PubMed  CAS  Google Scholar 

  • Karthikkumar V, Sivagami G, Vinothkumar R, Rajkumar D, Nalini N (2012) Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Environ Toxicol Pharmacol 34(3):949–958

    Article  PubMed  CAS  Google Scholar 

  • Keng CL, See KS, Hoon LP, Lim BP (2008) Effect of plant growth regulators and subculture frequency on callus culture and the establishment of Melastoma malabathricum cell suspension cultures for the production of pigments. Biotechnology 7(4):678–685

    Article  CAS  Google Scholar 

  • Khan T, Abbasi BH, Khan MA (2018) The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. J Photochem Photobiol B Biol 185:153–160. https://doi.org/10.1016/j.jphotobiol.2018.06.002

    Article  CAS  Google Scholar 

  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J (2014) New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36(12):2393–2406

    Article  PubMed  CAS  Google Scholar 

  • Khojasteh A, Mirjalili MH, Palazon J, Eibl R, Cusido RM (2016) Methyl jasmonate enhanced production of rosmarinic acid in cell cultures of Satureja khuzistanica in a bioreactor. Eng Life Sci 16(8):740–749

    Article  CAS  Google Scholar 

  • Kim HK, Oh SR, Lee HK, Huh H (2001) Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze Biotech Lett 23:55–60

    Article  Google Scholar 

  • Kim BG, Jung WD, Mok H, Ahn JH (2013a) Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates. Microb Cell Factories 12(15):15

    Article  CAS  Google Scholar 

  • Kim YB, Kim JK, Uddin MR, Xu H, Park WT, Tuan PA, Li X, Chung E, Lee JH, Park SU (2013b) Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS One 8:e64199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim GD, Park YS, Jin YH, Park CS (2015) Production and applications of rosmarinic acid and structurally related compounds. Appl Microbial Biotechnol 99(5):2083–2092

    Article  CAS  Google Scholar 

  • Kintzios S, Kollias H, Straitouris E, Makri O (2004) Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Biotechnol Lett 26:521–523

    Article  PubMed  CAS  Google Scholar 

  • Kopeina GS, Senichkin VV, Zhivotovsky B (2017) Caloric restriction-A promising anti-cancer approach: from molecular mechanisms to clinical trials. Biochim Biophys Acta 1867(1):29–41. https://doi.org/10.1016/j.bbcan.2016.11.002

  • Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tissue Organ Cult 108:73–81

    Article  CAS  Google Scholar 

  • Kumar PM, Sasmal D, Mazumder PM (2010) The antihyperglycemic effect of aerial parts of Salvia splendens (scarlet sage) in streptozotocin-induced diabetic-rat. Pharm Res 2:190–194

    Google Scholar 

  • Lee J, Jung E, Kim Y, Lee J, Park J, Hong S, Hyun CG, Park D, Kim YS (2006) Rosmarinic acid as a downstream inhibitor of IKK-β in TNF-α-induced upregulation of CCL11 and CCR3. Br J Pharmacol 148(3):366–375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Kim YS, Park D (2007) Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem Pharmacol 74(7):960–968

  • Lee SY, Xu H, Kim YK, Park SU (2008) Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 24:969–972

    Article  Google Scholar 

  • Lee SY, Lee CY, Eom SH, Kim YK, Park NI, Park SU (2010) Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Sci Res Essays 5:1122–1126

    Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Rosmarinic acid production by Coleus forskohlii hairy root cultures. Plant Cell Tissue Organ Cult 80:151–155

    Article  CAS  Google Scholar 

  • Li H, Fu Y, Sun H, Zhang Y, Lan X (2017) Transcriptomic analyses reveal biosynthetic genes related to rosmarinic acid in Dracocephalum tanguticum. Sci Rep 7(1):74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Z, Ma Y, Xu T, Cui B, Liu Y, Guo Z, Yang D (2013) Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza bunge hairy roots. PLoS One 8:e72806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CS, Kuo CL, Wang JP, Cheng JS, Huang ZW, Chen CF (2007) Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. J Ethnopharmacol 112(3):557–567

    Article  PubMed  Google Scholar 

  • Lin M, Zhang BX, Zhang C, Shen N, Zhang YY, Wang AX (2014) Tu CX (2014) Ginsenosides Rb1 and Rg1 stimulate melanogenesis in human epidermal melanocytes via PKA/CREB/MITF signaling. Evid Based Complement Alternat Med:892073

  • Lin S-R, Fu Y-S, Tsai M-J, Cheng H, Weng C-F (2017) Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci 18(7):1412

    Article  PubMed Central  Google Scholar 

  • Lozano-Baena MD, Tasset I, Muñoz-Serrano A, Alonso-Moraga Á, de Haro-Bailón A (2016) Cancer prevention and health benefices of traditionally consumed Borago officinalis plants. Nutrients 8:48. https://doi.org/10.3390/nu8010048

    Article  PubMed Central  CAS  Google Scholar 

  • Lu X, Hao L, Wang F, Huang C, Wu S (2013) Molecular cloning and overexpression of the tyrosine aminotransferase (TAT) gene leads to increased rosmarinic acid yield in Perilla frutescens. Plant Cell Tissue Organ Cult 115:69–83

    Article  CAS  Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647. https://doi.org/10.3389/fpls.2016.01647

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun W, Xu H, Wang B (2014) Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant 152(2):241–255

    Article  PubMed  CAS  Google Scholar 

  • Martinez BC, Park CH (1993) Characteristics of batch suspension cultures of preconditioned Coleus blumei cells: sucrose effect. Biotechnol Prog 9:97–100

    Article  CAS  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560

    Article  PubMed  CAS  Google Scholar 

  • Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019

    Article  CAS  Google Scholar 

  • Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288(2):183–191

    Article  PubMed  CAS  Google Scholar 

  • Moore J, Yousef M, Tsiani E (2016) Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 8(11):731

    Article  PubMed Central  CAS  Google Scholar 

  • Murakami Y, Omoto T, Asai I, Shimomura K, Yoshihira K, Ishimaru K (1998) Rosmarinic acid and related phenolics in transformed root cultures of Hyssopus officinalis. Plant Cell Tissue Organ Cult 53:75–78

    Article  CAS  Google Scholar 

  • Nakasha JJ, Sinniah UR, Shaharuddin NA, Hassan SA, Subramaniam S, Swamy MK (2017) Establishment of an efficient in vitro regeneration and Agrobacterium rhizogenes-mediated genetic transformation protocol for safed musli (Chlorophytum borivilianum Santapau & R.R.Fern.). In Vitro Cell Dev Biol Plant 53:571–578. https://doi.org/10.1007/s11627-017-9831-8

    Article  CAS  Google Scholar 

  • Narayani M, Srivastava S (2017) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16(6):1227–1252

    Article  CAS  Google Scholar 

  • Nascimento EM, Rodrigues FF, Campos AR, Costa JG (2009) Phytochemical prospection, toxicity and antimicrobial activity of Mentha arvensis (Labiatae) from northeast of Brazil. J Young Pharm 1:210–212

    Article  CAS  Google Scholar 

  • Ogata A, Tsuruga A, Matsuno M, Mizukami H (2004) Elicitor-induced rosmarinic acid in Lithospermum erythrorhizon cell suspension cultures: activities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnol 21:393–396

    Article  CAS  Google Scholar 

  • Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440

  • Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25(4):549–557

    Article  PubMed  CAS  Google Scholar 

  • Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Park SU, Uddin R, Xu H, Kim YK, Lee SY (2008) Biotechnological applications for rosmarinic acid production in plant. Afr J Biotechnol 7(25):4959–4965

    CAS  Google Scholar 

  • Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176(1–4):5–16

    Article  CAS  Google Scholar 

  • Pavlov A, Georgiev M, Panchev I, Ileva M (2005a) Optimization of rosmarinic acid production by Lavandula vera MM plant cell suspension in a laboratory bioreactor. Biotechnol Prog 21:394–396

    Article  PubMed  CAS  Google Scholar 

  • Pavlov AI, Georgiev MI, Ilieva MP (2005b) Production of rosmarinic acid by Lavandula vera MM cell suspension in bioreactor: effect of dissolved oxygen concentration and agitation. World J Microbiol Biotechnol 21:389–392

    Article  CAS  Google Scholar 

  • Petersen M (2013) Rosmarinic acid: new aspects. Phytochem Rev 12(1):207–227. https://doi.org/10.1007/s11101-013-9282-8

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Hausler E, Meinhard J, Karwatzki B, Gertlowski C (1994) The biosynthesis of rosmarinic acid in suspension-cultures of Coleus blumei. Plant Cell Tissue Organ Cult 38:171–179

    Article  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hucherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  PubMed  CAS  Google Scholar 

  • Pezeshki S, Petersen M (2018) Rosmarinic acid and related metabolites. In: Biotechnology of natural products. Springer, pp 25–60. https://doi.org/10.1007/978-3-319-67903-7_2

  • Phatak SV, Heble MR (2002) Rosmarinic acid synthesis in shoot cultures of Mentha arvensis Linn. Indian J Biotechnol 1:381–385

    Google Scholar 

  • Rahman RAI, El-Wakil HE, Abdelsalam NR, Elsaadany RMA (2015) In-vitro production of rosmarinic acid from basil (Ocimum basilicum L.) and lemon balm (Melissa officinalis L.). Middle East J Appl Sci 5(01):47–51

    Google Scholar 

  • Rai A, Nakaya T, Shimizu Y, Rai M, Nakamura M, Suzuki H, Saito K, Yamazaki M (2018) De novo transcriptome assembly and characterization of Lithospermum officinale to discover putative genes involved in specialized metabolites biosynthesis. Planta Med. https://doi.org/10.1055/a-0630-5925

  • Ramanauskiene K, Raudonis R, Majiene D (2016) Rosmarinic acid and Melissa officinalis extracts differently affect glioblastoma cells. Oxidative Med Cell Longev 2016:1564257

    Article  CAS  Google Scholar 

  • Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137:287–291

    Article  PubMed  CAS  Google Scholar 

  • Ru M, Wang K, Bai Z, Peng L, He S, Wang Y, Liang Z (2017) A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Sci Rep 2017(7):4892. https://doi.org/10.1038/s41598-017-05290-4

    Article  CAS  Google Scholar 

  • Ruffoni B, Bertoli A, Pistelli L, Pistelli L (2016) Micropropagation of Salvia wagneriana Polak and hairy root cultures with rosmarinic acid production. Nat Prod Res 30(22):2538–2544

    Article  CAS  PubMed  Google Scholar 

  • Sahraroo A, Babalar M, Mirjalili MH, Moghaddam MR, Ebrahimi SN (2014) In-vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iran J Pharm Res 13(4):1447–1456

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sahraroo A, Mirjalili MH, Corchete P, Babalar M, Moghadam MR (2016) Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid. Cytotechnology 68(4):1415–1424

    Article  PubMed  CAS  Google Scholar 

  • Sahu R, Gangopadhyay M, Dewanjee S (2013) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiol Plant 35:1473–1481

    Article  CAS  Google Scholar 

  • Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R, Inoue KI, Sadakane K, Ichinose T, Yoshikawa T (2004) Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy 34(6):971–977

  • Scheckel KA, Degner SC, Romagnolo DF (2008) Rosmarinic acid antagonizes activator protein- 1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 138(11):2098–2105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahidi F, Wanasundara PK (1992) Phenolic antioxidant. Crit Rev Food Sci Nutr 32:67–103

    Article  PubMed  CAS  Google Scholar 

  • Shi M, Huang F, Deng C, Wang Y, Kai G (2018) Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci Nutr (just-accepted):1–40. https://doi.org/10.1080/10408398.2018.1474170

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Singh A, Dwivedi P (2018) Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: a review. J Pharmacogn Phytochem 7(1):750–757

    Google Scholar 

  • Singh V, Sharma P, Capalash N (2013) DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets 13(4):379–399

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Conlan XA, Adholeya A, Cahill DM (2016) Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tissue Organ Cult 126(1):19–32

    Article  CAS  Google Scholar 

  • Su WW, Humphrey AE (1991) Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor. Biotechnol Lett 13:889–892

    Article  CAS  Google Scholar 

  • Su WW, Lei F (1993) Rosmarinic acid production in perfused Anchusa officinalis culture: effect of inoculum size. Biotechnol Lett 15:1035–1038

    Article  CAS  Google Scholar 

  • Su WW, Lei F, Kao NP (1995) High density cultivation of Anchusa officinalis in a stirred-tank biorea ctor with in situ filtration. Appl Microbiol Biotechnol 44:293–299

    Article  CAS  Google Scholar 

  • Su C, Gius JP, Steenberg J, Haskins AH, Heishima K, Omata C, Iwayama M, Murakami M, Mori T, Maruo K, Kato TA (2017) Hypersensitivity of BRCA2 deficient cells to rosemary extract explained by weak PARP inhibitory activity. Sci Rep 7(1):16704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suan See K, Bhatt A, Lai Keng C (2011) Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae). Rev Biol Trop 59:597–606

    Google Scholar 

  • Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Ind Crop Prod 87:161–176

    Article  CAS  Google Scholar 

  • Swamy MK, Mohanty SK, Sinniah UR, Maniyam A (2015) Evaluation of patchouli (Pogostemon cablin Benth.) cultivars for growth, yield and quality parameters. J Essent Oil Bear Plants 18:826–832

    Article  CAS  Google Scholar 

  • Swamy MK, Sinniah UR, Akhtar MS (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 22:1019. https://doi.org/10.3390/molecules22061019

    Article  CAS  Google Scholar 

  • Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18:485–489

    Article  CAS  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431–434

    Article  CAS  Google Scholar 

  • Takeda H, Tsuji M, Matsumiya T, Kubo M (2002) Identification of rosmarinic acid as a novel antidepressive substance in the leaves of Perilla frutescens Britton var. acuta Kudo (Perillae Herba). Nihon Shinkei Seishin Yakurigaku Zasshi 22:15–22

    PubMed  CAS  Google Scholar 

  • Talebi M, Moghaddam M, Pirbalouti AG (2018) Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol Plant 40(2):34

    Article  CAS  Google Scholar 

  • Tao L, Wang S, Zhao Y, Sheng X, Wang A, Zheng S, Lu Y (2014) Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity. Phytomedicine 21(11):1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Tepe B, Sokmen A (2007) Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures. Nat Prod Res 21(13):1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  • Tuan PA, Park WT, Xu H, Park NI, Park SU (2012) Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J Agric Food Chem 60(23):5945–5951

    Article  PubMed  CAS  Google Scholar 

  • Tumur Z, Guerra C, Yanni P, Eltejaye A, Waer C, Alkam T, Henson BS (2015) Rosmarinic acid inhibits cell growth and migration in head and neck squamous cell carcinoma cell lines by attenuating epidermal growth factor receptor signaling. J Cancer Sci Ther 7:367–374. https://doi.org/10.4172/1948-5956.1000376

    Article  Google Scholar 

  • Venkatachalam K, Gunasekaran S, Jesudoss VA, Namasivayam N (2013) The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis. Exp Toxicol Pathol 65(4):409–418

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Gunasekaran S, Namasivayam N (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur J Pharmacol 791:37–50

    Article  PubMed  CAS  Google Scholar 

  • Vladimir-Knezevic S, Blazekovic B, Kindl M, Vladic J, Lower-Nedza AD, Brantner AH (2014) Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19:767–782

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang K, Schneider B, Petersen M (2006) Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-d-glucoside in suspension cultures of the hornwort, Anthoceros agrestis Paton. Planta 223(2):369–373

  • Wenping H, Yuan Z, Jie S, Lijun Z, Zhezhi W (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98(4):272–279

    Article  PubMed  CAS  Google Scholar 

  • Weremczuk-Jezyna I, Grzegorczyk-Karolak I, Frydrych B, Krolicka A, Wysokinska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103

    Article  CAS  Google Scholar 

  • Wu CF, Hong C, Klauck SM, Lin YL, Efferth T (2015) Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J Ethnopharmacol 176:55–68

    Article  PubMed  CAS  Google Scholar 

  • Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C (2009) Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer 61(4):564–571

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137:1–9

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Zhang L, Gao S, Saechao S, Di P, Jungfen C, Wansheng C (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One 6:e29713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing BY, Dang XL, Zhang JY, Wang B, Chen ZY, Dong JE (2013) Effects of methyl jasmonate on the biosynthesis of rosmarinic acid and related enzymes in Salvia miltiorrhiza suspension cultures. Zhiwu Shengli Xuebao/Plant Physiol J 49:1326–1332

    CAS  Google Scholar 

  • Xing B, Yang D, Guo W, Liang Z, Yan X, Zhu Y, Liu Y (2014) Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots. Molecules 20(1):309–324

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Kim YK, Jin XJ, Lee SY, Park SU (2008) Rosmarinic acid biosynthesis in callus and cell cultures of Agastache rugosa Kuntze. J Med Plants Res 2:237–241

    Google Scholar 

  • Xu Y, Xu G, Liu L, Xu D, Liu J (2010) Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation–reduction pathway in Ls174-T cells. J Cell Biochem 111(2):370–379

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Yang F, Zhang Y, Shen X (2016a) Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice. J Radiat Res 57:356–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Han S, Lei K, Chang X, Wang K, Li Z, Liu J (2016b) Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur J Cancer Prev 25(6):481–489

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Shi M, Ng J, Wu HY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170:853–858

    Article  CAS  Google Scholar 

  • Yao YF, Wang CS, Qiao J, Zhao GR (2013) Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng 19:79–87

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Guo W, Yang D, Hou Z, Liang Z (2018) Transcriptional profiles of SmWRKY family genes and their putative roles in the biosynthesis of tanshinone and phenolic acids in Salvia miltiorrhiza. Int J Mol Sci 19(6):1593

    Article  PubMed Central  Google Scholar 

  • Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64:585–586

    Article  CAS  Google Scholar 

  • Zhang Y, Yan YP, Wang ZZ (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58:12168–12175

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Yan Y, Wang B, Liang Z, Liu Y, Liu F, Qi Z (2014a) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J Biosci Bioeng 117:645–651

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yan YP, Wu YC, Hua WP, Chen C, Ge Q, Wang ZZ (2014b) Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab Eng 21:71–80

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Sun W, Chen J, Tan H, Xiao Y, Li Q, Ji Q, Gao S, Chen L, Chen S, Zhang L (2016) SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Sci Rep 6:22852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, Huang F, Li S, Wang Y, Kai G (2017) Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 7(1):10554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuang Y, Jiang J, Bi H, Yin H, Liu S, Liu T (2016) Synthesis of rosmarinic acid analogues in Escherichia coli. Biotechnol Lett 38(4):619–27

  • Zomorodian K, Saharkhiz MJ, Rahimi MJ, Bandegi A, Shekarkhar G, Bandegani A, Pakshir K, Bazargani A (2011) Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria multiflora. Pharmacogn Mag 7:53–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallappa Kumara Swamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, M.K., Sinniah, U.R. & Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol 102, 7775–7793 (2018). https://doi.org/10.1007/s00253-018-9223-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9223-y

Keywords

Navigation