Skip to main content
Log in

cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The final reactions of rosmarinic acid biosynthesis, the introduction of the aromatic 3- and 3′-hydroxyl groups, are catalysed by cytochrome P450-dependent hydroxylases. The cDNAs encoding CYP98A14 as well as a NADPH:cytochrome P450 reductase (CPR) were isolated from Coleus blumei and actively expressed in Saccharomyces cerevisiae. The CYP98A14-cDNA showed an open reading frame of 1521 nucleotides with high similarities to 4-coumaroylshikimate/quinate 3-hydroxylases. Yeast microsomes harbouring the CYP98A14 protein catalysed the 3-hydroxylation of 4-coumaroyl-3′,4′-dihydroxyphenyllactate and the 3′-hydroxylation of caffeoyl-4′-hydroxyphenyllactate, in both cases forming rosmarinic acid. Apparent K m-values for 4-coumaroyl-3′,4′-dihydroxyphenyllactate and caffeoyl-4′-hydroxyphenyllactate were determined to be at 5 μM and 40 μM, respectively. CYP98A14 differs from CYP98s from other plants, since 4-coumaroylshikimate or -quinate were not accepted as substrates. Coexpression of the Coleus blumei CPR and CYP98A14 in the same yeast cells increased the hydroxylation activity up to sevenfold. CYP98A14 from Coleus blumei is a novel bifunctional cytochrome P450 specialised for rosmarinic acid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulrazzak N, Pollet B, Ehlting J et al (2006) A coumaroyl-3′-ester hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48. doi:10.1104/pp.105.069690

    Article  CAS  PubMed  Google Scholar 

  • Anterola AM, Jeon JH, Davin LB et al (2002) Transcriptional control of monolignol biosynthesis in Pinus taeda—factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J Biol Chem 277:18272–18280. doi:10.1074/jbc.M112051200

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Kahn RA, Nielsen HL et al (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 38:725–734. doi:10.1023/A:1006064202774

    Article  CAS  PubMed  Google Scholar 

  • Benveniste I, Lesot A, Hasenfratz G et al (1991) Multiple forms of NADPH-cytochrome P450 reductase in higher plants. Biochem Biophys Res Commun 177:105–112. doi:10.1016/0006-291X(91)91954-B

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brosché M, Fant C, Bergkvist SW et al (1999) Molecular markers for UV-B stress in plants: alteration of the expression of four classes of genes in Pisum sativum and the formation of high molecular mass RNA adducts. Biochim Biophys Acta 1447:185–198

    PubMed  Google Scholar 

  • Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod-A software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349. doi:10.1002/1615-9861(200102)1:2<340::AID-PROT340>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  • De Vetten N, ter Horst J, van Schaik HP et al (1999) A cytochrome b5 is required for full activity of flavonoid 3′, 5′-hydroxylase, a cytochrome P450 involved in the formation of blue flowercolors. Proc Natl Acad Sci USA 96:778–783. doi:10.1073/pnas.96.2.778

    Article  PubMed  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R et al (2006) Cytochromes P450 in phenolic metabolism. Phytochem Rev 5:239–270. doi:10.1007/s11101-006-9025-1

    Article  CAS  Google Scholar 

  • Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291–297

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Forkmann G, Heller W (1999) Biosynthesis of flavonoids. In: Barton DHR, Nakanishi K, Meth-Coon O, Sankawa U (eds) Comprehensive natural products chemistry, polyketides and other secondary metabolites including fatty acids and their derivatives, 1st edn. Elsevier Science, Oxford, pp 713–748

    Google Scholar 

  • Franke R, Humphreys JM, Hemm MR et al (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45. doi:10.1046/j.1365-313X.2002.01266.x

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Beuerle T, Ullmann P et al (2002) Differential production of meta hydroxylated phenylpropanoids in Sweet Basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol 130:1536–1544. doi:10.1104/pp.007146

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Bartley GE, Scolino PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA (1996) Catalytic reactivities and structure/function relationships of cytochrome P450 enzymes. Phytochem 43:1–21. doi:10.1016/0031-9422(96)00263-4

    Article  CAS  Google Scholar 

  • Heller W, Kühnl T (1985) Elicitor induction of a microsomal 5-O-(4-coumaroyl) shikimate 3′-hydroxylase in parsley cell suspension cultures. Arch Biochem Biophys 241:453–460. doi:10.1016/0003-9861(85)90570-3

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Maury S, Martz F et al (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103. doi:10.1074/jbc.M209362200

    Article  CAS  PubMed  Google Scholar 

  • Jennewein S, Park H, DeJong JH et al (2005) Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in taxol biosynthesis. Biotechnol Bioeng 89:588–598. doi:10.1002/bit.20390

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim BG, Lee HJ et al (2005) Enhancement of isoflavone synthase activity by co-expression of P450 reductase from rice. Biotechnol Lett 27:1291–1294. doi:10.1007/s10529-005-0221-7

    Article  CAS  PubMed  Google Scholar 

  • Koopmann E, Hahlbrock K (1997) Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley. Proc Natl Acad Sci USA 94:14954–14959. doi:10.1073/pnas.94.26.14954

    Article  CAS  PubMed  Google Scholar 

  • Kühnl T, Koch U, Heller W et al (1987) Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-d-quinate/ shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys 258:226–232. doi:10.1016/0003-9861(87)90339-0

    Article  PubMed  Google Scholar 

  • Mahesh V, Million-Rousseau R, Ullmann P et al (2007) Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64:145–159. doi:10.1007/s11103-007-9141-3

    Article  CAS  PubMed  Google Scholar 

  • Matsuno M, Nagatsu A, Ogihara Y et al (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224. doi:10.1016/S0014-5793(02)02368-2

    Article  CAS  PubMed  Google Scholar 

  • Meijer AH, Lopes Cardoso MI, Voskuilen JT et al (1993) Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 monooxygenases in plants. Plant J 4:47–60. doi:10.1046/j.1365-313X.1993.04010047.x

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D (1998) Two isoforms of NADPH:cytochrome P450 reductase in Arabidopsis thaliana—Gene structure, heterologous expression in insect cells, and differential regulation. Plant Physiol 116:357–367. doi:10.1104/pp.116.1.357

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol 113:755–763. doi:10.1104/pp.113.3.755

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Hehn A, Werck-Reichhart D (2002) Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC Plant Biol 2:7. doi:10.1186/1471-2229-2-7

    Article  PubMed  Google Scholar 

  • Morant M, Schoch GA, Ullmann P et al (2007) Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol 63:1–19. doi:10.1007/s11103-006-9028-8

    Article  CAS  PubMed  Google Scholar 

  • Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122. doi:10.1016/0378-1119(95)00037-7

    Article  CAS  PubMed  Google Scholar 

  • Nair RB, Xia Q, Kartha CJ et al (2002) Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Plant Physiol 130:210–220. doi:10.1104/pp.008649

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM et al (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772. doi:10.1104/pp.104.039826

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754. doi:10.1038/nbt966

    Article  CAS  PubMed  Google Scholar 

  • Ohta D, Mizutani M (2004) Redundancy or flexibility: molecular diversity of the electron transfer components for P450 monooxygenases in higher plants. Front Biosci 9:1587–1597. doi:10.2741/1356

    Article  CAS  PubMed  Google Scholar 

  • Petersen M (1997) Cytochrome P-450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172. doi:10.1016/S0031-9422(97)00135-0

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125. doi:10.1016/S0031-9422(02)00513-7

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Häusler E, Karwatzki B et al (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14. doi:10.1007/BF00201337

    Article  CAS  Google Scholar 

  • Petersen M, Van Der Straeten D, Bauw G (1995) Full-length cDNA clone from Coleus blumei (Z49150) with high similarity to cobalamine-independent methionine synthase. Plant Physiol 109:338

    Google Scholar 

  • Pi Y, Liao Z, Chai Y et al (2006) Molecular cloning and characterization of a novel stem-specific gene from Camptotheca acuminata. J Biochem Mol Biol 39:68–75

    CAS  PubMed  Google Scholar 

  • Pompon D, Louerat B, Bronine A et al (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64. doi:10.1016/S0076-6879(96)72008-6

    Article  CAS  PubMed  Google Scholar 

  • Porter TD (2002) The roles of cytochrome b5 in cytochrome P450 reactions. J Biochem Mol Toxicol 16:311–316. doi:10.1002/jbt.10052

    Article  CAS  PubMed  Google Scholar 

  • Porter TD (2004) Jud Coon: 35 years of P450 research, a synopsis of P450 history. Drug Metab Dispos 32:1–6. doi:10.1124/dmd.32.1.1

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Ehlting J, Douglas CJ (2002) Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar. Plant Physiol 130:1837–1851. doi:10.1104/pp.008011

    Article  CAS  PubMed  Google Scholar 

  • Rosco A, Pauli HH, Priesner W et al (1997) Cloning and heterologous expression of NADPH-cytochrome P450 reductases from the Papaveraceae. Arch Biochem Biophys 348:369–377. doi:10.1006/abbi.1997.0374

    Article  CAS  PubMed  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG et al (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Res 26:1628–1635. doi:10.1093/nar/26.7.1628

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Goepfert S, Morant M et al (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574. doi:10.1074/jbc.M104047200

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Morant M, Abdulrazzak N et al (2006) The meta-hydroxylation step in the phenylpropanoid pathway: a new level of complexity in the pathway and its regulation. Environ Chem Lett 4:127–136. doi:10.1007/s10311-006-0062-1

    Article  CAS  Google Scholar 

  • Schuler MA (1996) Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 15:235–284. doi:10.1080/713608134

    Article  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667. doi:10.1146/annurev.arplant.54.031902.134840

    Article  CAS  PubMed  Google Scholar 

  • Shet MS, Sathasivan K, Arlotto MA et al (1993) Purification, characterization, and cDNA cloning of an NADPH-cytochrome P450 reductase from mung bean. Proc Natl Acad Sci USA 90:2890–2894. doi:10.1073/pnas.90.7.2890

    Article  CAS  PubMed  Google Scholar 

  • Siminszky B, Corbin FT, Ward ER et al (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96:1750–1755. doi:10.1073/pnas.96.4.1750

    Article  CAS  PubMed  Google Scholar 

  • Simmons DL, Lalley PA, Kasper CB (1985) Chromosomal assignments of genes coding for components of the mixed-function oxidase system in mice. Genetic localization of the cytochrome P-450PCN and P-450 PB gene families and the NADPH-cytochrome P-450 oxidoreductase and epoxide hydratase genes. J Biol Chem 260:515–521

    CAS  PubMed  Google Scholar 

  • Urban P, Werck-Reichhart D, Teutsch HG et al (1994) Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway. Eur J Biochem 222:843–850. doi:10.1111/j.1432-1033.1994.tb18931.x

    Article  CAS  PubMed  Google Scholar 

  • Urban P, Mignotte C, Kazmeier M et al (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272:19176–19186. doi:10.1074/jbc.272.31.19176

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Roberts DL, Paschke R et al (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci USA 94:8411–8416. doi:10.1073/pnas.94.16.8411

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart D, Bak S, Paquette S (2002) Cytochromes P450. In: Somerville CR, Meyerowitz EM (eds) Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Yamada T, Imaishi H, Oka A et al (1998) Molecular cloning and expression in Saccharomyces cerevisiae of tobacco NADPH-cytochrome P450 oxidoreductase cDNA. Biosci Biotechnol Biochem 62:1403–1411. doi:10.1271/bbb.62.1403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for Dr. Stefan Martens’ and Dr. Anna Berim’s help with the yeast expression system in our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberle, D., Ullmann, P., Werck-Reichhart, D. et al. cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Mol Biol 69, 239–253 (2009). https://doi.org/10.1007/s11103-008-9420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9420-7

Keywords

Navigation