Skip to main content
Log in

Modeling of a deep-groove ball bearing with waviness defects in planar multibody system

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

An approach for dynamic modeling of a deep-groove ball bearing with waviness defects in planar multibody system is presented. The deep-groove ball bearing is modeled by introducing a nonlinear force system that takes into account the contact elastic deformations between the ball elements and raceways. Hertzian contact theory is applied to calculate the elastic deflection and nonlinear contact force. The waviness defect on the bearing’s inner and outer raceways is modeled using a sinusoidal function. A planar slider–crank mechanism containing a deep-groove ball bearing with waviness defects on the raceways is chosen as an example to demonstrate application of the methodologies. Variation of the slider acceleration, crank moment, and bearing equivalent reaction force is used to illustrate the dynamic performance of the mechanism when the effect of the bearing waviness defect is considered. The results indicate that the waviness defect can stimulate vibration of the slider–crank mechanism in its kinematic processes. Such vibrations can lead to noise and affect the stability of the mechanical system motion. For a constant waviness, bearings with different numbers of rolling balls have different amplitudes of vibration of the slider–crank mechanism. Furthermore, the effect of varying the rolling ball number and waviness on the dynamic performance of the slider–crank mechanism is different for bearings in different positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Upadhyay, S.H., Harsha, S.P., Jain, S.C.: Analysis of nonlinear phenomena in high speed ball bearings due to radial clearance and unbalanced rotor effects. J. Vib. Control 16(1), 65–88 (2010)

    Article  MATH  Google Scholar 

  2. Sinou, J.J.: Non-linear dynamics and contacts of an unbalanced flexible rotor supported on ball bearings. Mech. Mach. Theory 44, 1713–1732 (2009)

    Article  MATH  Google Scholar 

  3. Tiwari, M., Prakash, O., Gupta, K.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Article  Google Scholar 

  4. Kappaganthu, K., Nataraj, C.: Nonlinear modeling and analysis of a rolling element bearing with a clearance. Commun. Nonlinear Sci. Numer. Simul. 16(10), 4134–4145 (2011)

    Article  MATH  Google Scholar 

  5. Patel, V.N., Tandon, N., Pandey, R.K.: A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races. J. Tribol. 132(4), 0411011 (2010)

    Article  Google Scholar 

  6. Patil, M.S., Mathew, J., Rajendrakumar, P.K., Desai, S.: A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. Int. J. Mech. Sci. 52(9), 1193–1201 (2010)

    Article  Google Scholar 

  7. Nakhaeinejad, M., Bryant, M.D.: Dynamic modeling of rolling element bearings with surface contact defects using bond graphs. J. Tribol. 133(1), 0111021 (2011)

    Article  Google Scholar 

  8. Liu, J., Shao, Y.M., Lim, T.C.: Vibration analysis of ball bearings with a localized defect applying piecewise response function. Mech. Mach. Theory 56, 156–169 (2012)

    Article  Google Scholar 

  9. Kankar, P.K., Sharma, S.C., Harsha, S.P.: Vibration based performance prediction of ball bearings caused by localized defects. Nonlinear Dyn. 69(3), 847–875 (2012)

    Article  MathSciNet  Google Scholar 

  10. Aktiirk, N.: The effect of waviness on vibrations associated with ball bearings. J. Tribol. 121(4), 667–677 (1999)

    Article  Google Scholar 

  11. Tandon, N., Choudhury, A.: A theoretical model to predict the vibration response of rolling bearings in a rotor bearing system to distributed defects under radial load. J. Tribol. 122(3), 609–615 (2000)

    Article  Google Scholar 

  12. Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: theory. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 217(3), 201–211 (2003)

    Google Scholar 

  13. Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 2: implementation and results. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 217(3), 213–223 (2003)

    Article  Google Scholar 

  14. Harsha, S.P., Sandeep, K., Prakash, R.: The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. Int. J. Mech. Sci. 45(4), 725–740 (2003)

    Article  Google Scholar 

  15. Harsha, S.P., Sandeep, K., Prakash, R.: Non-linear behaviors of rolling element bearings due to surface waviness. J. Sound Vib. 272(3–5), 557–580 (2004)

    Article  Google Scholar 

  16. Harsha, S.P., Kankar, P.K.: Stability analysis of a rotor bearing system due to surface waviness and number of balls. Int. J. Mech. Sci. 46(7), 1057–1081 (2004)

    Article  MATH  Google Scholar 

  17. Bai, C.Q., Xu, Q.Y.: Dynamic model of ball bearings with internal clearance and waviness. J. Sound Vib. 294(1–2), 23–48 (2006)

    Google Scholar 

  18. Jang, G., Jeong, S.W.: Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. J. Tribol. 124(1), 82–90 (2004)

    Article  Google Scholar 

  19. Jang, G., Jeong, S.W.: Stability analysis of a rotating system due to the effect of ball bearing waviness. J. Tribol. 125(1), 91–101 (2003)

    Article  Google Scholar 

  20. Jang, G., Jeong, S.W.: Vibration analysis of a rotating system due to the effect of ball bearing waviness. J. Sound Vib. 269(3–5), 709–726 (2004)

    Article  Google Scholar 

  21. Wang, L.Q., Cui, L., Zheng, D.Z., Gu, L.: Nonlinear dynamics behaviors of a rotor roller bearing system with radial clearances and waviness considered. Chin. J. Aeronaut. 21(1), 86–96 (2008)

    Article  Google Scholar 

  22. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2(1), 1–24 (1998)

    Article  MATH  Google Scholar 

  23. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamic behavior of planar rigid multi-body systems including revolute joints with clearance. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221(2), 161–174 (2007)

    Article  Google Scholar 

  24. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  25. Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65(4), 383–398 (2011)

    Article  Google Scholar 

  26. Flores, P., Machado, M., Seabra, E., Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2010)

    Article  Google Scholar 

  27. Erkaya, S., Uzmay, I.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58(1–2), 179–198 (2009)

    Article  MATH  Google Scholar 

  28. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010)

    Article  MATH  Google Scholar 

  29. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 0310031 (2012)

    Article  Google Scholar 

  30. Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  31. Megahed, S.M., Haroun, A.F.: Analysis of the dynamic behavioral performance of mechanical systems with multi-clearance joints. J. Comput. Nonlinear Dyn. 7(1), 0110021 (2012)

    Article  Google Scholar 

  32. Flores, P., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Modelling lubricated revolute joints in multibody mechanical systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 218(4), 183–190 (2004)

    Google Scholar 

  33. Ravn, P., Shivaswamy, S., Alshaer, B.J., Lankarani, H.M.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122(4), 484–488 (2000)

    Article  Google Scholar 

  34. Flores, P., Ambrósio, J., Claro, J.C.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)

    Article  MATH  Google Scholar 

  35. Alshaer, B.J., Nagarajan, H., Beheshti, H.K., Lankarani, H.M., Shivaswamy, S.: Dynamics of a multibody mechanical system with lubricated long journal bearings. J. Mech. Des. 127(3), 493–498 (2005)

    Article  Google Scholar 

  36. Flores, P., Ambrósio, J., Claro, J.C.P., Lankaranic, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  MATH  Google Scholar 

  37. Flores, P., Ambrósio, J., Claro, J.C.P., Lankaranic, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56(3), 277–295 (2009)

    Article  MATH  Google Scholar 

  38. Machado, M., Costa, J., Seabra, P., Flores, P.: The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dyn. 69(1–2), 635–654 (2012)

    Article  Google Scholar 

  39. Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012)

    Article  Google Scholar 

  40. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  41. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011)

    Article  MATH  Google Scholar 

  42. Lee, K.: A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point. Multibody Syst. Dyn. 26(4), 425–439 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63(4), 681–697 (2011)

    Article  Google Scholar 

  44. Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. 28(4), 313–330 (2012)

    Article  MathSciNet  Google Scholar 

  45. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28(4), 369–393 (2012)

    Article  MathSciNet  Google Scholar 

  46. Gummer, A., Sauer, B.: Influence of contact geometry on local friction energy and stiffness of revolute joints. J. Tribol. 134(2), 0214021 (2012)

    Article  Google Scholar 

  47. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Gregory Sawyer, W.: Analysis of planar multibody systems with revolute joint wear. Wear 268(5–6), 643–652 (2010)

    Article  Google Scholar 

  49. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 0110071 (2008)

    Article  Google Scholar 

  50. Flores, P., Lankarani, H.M.: Spatial rigid-multi-body systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60(1–2), 99–114 (2010)

    Article  MATH  Google Scholar 

  51. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  MATH  Google Scholar 

  52. Qi, Z.H., Luo, X.M., Huang, Z.H.: Frictional contact analysis of spatial prismatic joints in multibody systems. Multibody Syst. Dyn. 26(4), 441–468 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Xu, L.X., Li, Y.G.: An approach for calculating the dynamic load of deep groove ball bearing joints in planar multibody systems. Nonlinear Dyn. 70(3), 2145–2161 (2012)

    Article  Google Scholar 

  54. Harris, T.A., Kotzalas, M.N.: Rolling Bearing Analysis. Wiley, New York (2006)

    Google Scholar 

  55. Tiwari, M., Prakash, O., Gupta, K.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced, horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Article  Google Scholar 

  56. Dietl, P., Wensing, J., van Nijen, G.C.: Rolling bearing damping for dynamic analysis of multi-body systems—experimental and theoretical results. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 214(1), 33–43 (2000)

    Google Scholar 

  57. Mitsuya, Y., Sawai, H., Shimizu, M., Aono, Y.: Damping in vibration transfer through deep-groove ball bearings. J. Tribol. 120(3), 413–420 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express the sincere thanks to the referees for their valuable suggestions. This project is supported by National Natural Science Foundation of China (Grant No. 51305300) and Natural Science Foundation of Tianjin (Grant No. 13JCQNJC04500). These supports are gracefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-xin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Lx., Li, Yg. Modeling of a deep-groove ball bearing with waviness defects in planar multibody system. Multibody Syst Dyn 33, 229–258 (2015). https://doi.org/10.1007/s11044-014-9413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9413-z

Keywords

Navigation