Skip to main content
Log in

Lubricated revolute joints in rigid multibody systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main purpose of this work is to present a general methodology for modeling lubricated revolute joints in constrained rigid multibody systems. In the dynamic analysis of journal-bearings, the hydrodynamic forces, which include both squeeze and wedge effects, generated by the lubricant fluid, oppose the journal motion. The hydrodynamic forces are obtained by integrating the pressure distribution evaluated with the aid of Reynolds’ equation, written for the dynamic regime. The hydrodynamic forces built up by the lubricant fluid are evaluated from the system state variables and included into the equations of motion of the multibody system. Numerical examples are presented in order to demonstrate the use of the methodologies and procedures described in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauchau, O.A., Ju, C.: Modeling friction phenomena in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195, 6909–6924 (2006). doi:10.1016/j.cma.2005.08.013

    Article  MATH  Google Scholar 

  2. Saracibar, C.A., Chimenti, M.: On the numerical modeling of frictional wear phenomena. Comput. Methods Appl. Mech. Eng. 177, 401–426 (1999). doi:10.1016/S0045-7825(98)00390-9

    Article  MATH  Google Scholar 

  3. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17-19), 1359–1369 (2004). doi:10.1016/j.compstruc.2004.03.031

    Article  Google Scholar 

  4. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006). doi:10.1115/1.2198877

    Article  Google Scholar 

  5. Bauchau, O.A., Rodriguez, J.: Modelling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39, 41–63 (2002). doi:10.1016/S0020-7683(01)00186-X

    Article  MATH  Google Scholar 

  6. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004). doi:10.1023/B:MUBO.0000042901.74498.3a

    Article  MATH  Google Scholar 

  7. Ambrósio, J.: Efficient kinematic joint description for flexible multibody systems experiencing linear and nonlinear deformations. Int. J. Numer. Methods Eng. 56, 1771–1793 (2003). doi:10.1002/nme.639

    Article  MATH  Google Scholar 

  8. Dubowsky, S., Deck, J.F., Costello, H.: The dynamic modeling of flexible spatial machine systems with clearance connections. J. Mech. Transm. Autom. Des. 109, 87–94 (1987)

    Google Scholar 

  9. Kakizaki, T., Deck, J.F., Dubowsky, S.: Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances. J. Mech. Des. 115, 839–847 (1993). doi:10.1115/1.2919277

    Article  Google Scholar 

  10. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998). doi:10.1023/A:1009759826529

    Article  MATH  Google Scholar 

  11. Haines, R.S.: A theory of contact loss at resolute joints with clearance. Proc. Inst. Mech. Eng. J. Mech. Eng. Sci. 22(3), 129–136 (1980). doi:10.1243/JMES_JOUR_1980_022_027_02

    Article  Google Scholar 

  12. Roger, R.J., Andrews, G.C.: Dynamic simulation of planar mechanical systems with lubricated bearing clearances using vector-network methods. J. Eng. Ind. 99(1), 131–137 (1977)

    Google Scholar 

  13. Liu, T.S., Lin, Y.S.: Dynamic analysis of flexible linkages with lubricated joints. J. Sound Vib. 141(2), 193–205 (1990). doi:10.1016/0022-460X(90)90834-M

    Article  Google Scholar 

  14. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance model in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37(9), 895–913 (2002). doi:10.1016/S0094-114X(02)00033-2

    Article  MATH  Google Scholar 

  15. Moes, H., Sikkes, E.G., Bosma, R.: Mobility and impedance tensor methods for full and partial-arc journal bearings. J. Tribol. 108, 612–620 (1986)

    Google Scholar 

  16. Booker, J.F.: Dynamically loaded journal bearings: mobility method of solution. J. Basic Eng. 4, 537–546 (1965)

    Google Scholar 

  17. Booker, J.F.: Dynamically loaded journal bearings: numerical application of mobility method. J. Lubr. Technol. 1, 168–176 (1971)

    Google Scholar 

  18. Goenka, P.K.: Analytical curve fits for solution parameters of dynamically loaded journal bearings. J. Tribol. 106, 421–428 (1984)

    Article  Google Scholar 

  19. Hamrock, B.J.: Fundamentals of Fluid Film Lubrication. McGraw Hill, New York (1994)

    Google Scholar 

  20. Frêne, J., Nicolas, D., Degneurce, B., Berthe, D., Godet, M.: Hydrodynamic Lubrication—Bearings and Thrust Bearings. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  21. Pinkus, O., Sternlicht, S.A.: Theory of Hydrodynamic Lubrication. McGraw Hill, New York (1961)

    MATH  Google Scholar 

  22. Dubois, G.B., Ocvirk, F.W.: Analytical derivation and experimental evaluation of short-bearing approximation for full journal bearings. NACA, Report 1157 (1953)

  23. Sommerfeld, A.: Zur Hydrodynamischen Theorie der Schmiermittelreibung. Z. Angew. Math. Phys. 50, 97–155 (1904)

    Google Scholar 

  24. Nikravesh, P.E.: Computer Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  25. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972). doi:10.1016/0045-7825(72)90018-7

    Article  MATH  MathSciNet  Google Scholar 

  26. Phelan, R.M.: Fundamentals of Mechanical Design, 3rd edn. McGraw-Hill, New York (1970)

    Google Scholar 

  27. ESDU: 84031 Tribology Series, Calculation Methods for Steadily Loaded Axial Groove Hydrodynamic Journal Bearings. Engineering Sciences Data Unit, London (1991)

    Google Scholar 

  28. Rahnejat, H.: Multi-body dynamics: historical evolution and application. Proc. Inst. Mech. Eng. J. Mech. Eng. Sci. 214(C), 149–173 (2000)

    Article  Google Scholar 

  29. Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. Ph.D. Dissertation, University of Minho, Guimarães, Portugal (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, P., Ambrósio, J., Claro, J.C.P. et al. Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn 56, 277–295 (2009). https://doi.org/10.1007/s11071-008-9399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9399-2

Keywords

Navigation