Skip to main content
Log in

The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work a comprehensive methodology for dynamic modeling and analysis of planar multibody systems with lubricated revolute joints is presented. In general, this type of mechanical systems includes journal-bearings in which the load varies in both magnitude and direction. The fundamental issues associated with the theory of lubrication for dynamically loaded journal-bearings are revisited that allow for the evaluation of the Reynolds equation for dynamic regime. This approach permits the derivation of the suitable hydrodynamic force laws that are embedded into the dynamics of multibody systems formulation. In this work, three different hydrodynamic force models are considered, namely the Pinkus and Sternlicht approach for long journal-bearings and the Frêne et al. models for both long and short journal-bearings. Results for a planar slider–crank mechanism with a lubricated revolute joint between the connecting-rod and slider are presented and utilized to discuss the assumptions and procedures adopted throughout the present study. Different test scenarios are taken into account with the purpose of performing a comparative study for quantifying the effect of the clearance size, lubricant viscosity, input crank speed and hydrodynamic force model on the dynamic response of multibody systems with lubricated revolute joints. From the global results obtained from computational simulations, it can be concluded that the clearance size, the lubricant viscosity and the operating conditions play a key role in predicting the dynamic behavior of multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinkus, O., Sternlicht, S.A.: Theory of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  2. Hamrock, B.J.: Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York (1994)

    Google Scholar 

  3. Frêne, J., Nicolas, D., Degneurce, B., Berthe, D., Godet, M.: Hydrodynamic Lubrication—Bearings and Thrust Bearings. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  4. Flores, P., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Modelling lubricated revolute joints in multibody mechanical systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 218(4), 183–190 (2004)

    Google Scholar 

  5. Alshaer, B.J., Nagarajan, H., Beheshti, H.K., Lankarani, H.M., Shivaswamy, S.: Dynamics of a multibody mechanical system with lubricated long journal bearings. J. Mech. Des. 127, 493–498 (2005)

    Article  Google Scholar 

  6. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  7. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  8. Booker, J.F.: Dynamically loaded journal bearings: Mobility method of solution. J. Basic Eng. 4, 537–546 (1965)

    Article  Google Scholar 

  9. Goenka, P.K.: Analytical curve fits for solution parameters of dynamically loaded journal bearings. J. Tribol. 106, 421–428 (1984)

    Article  Google Scholar 

  10. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance model in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37(9), 895–913 (2002)

    Article  MATH  Google Scholar 

  11. Stefanelli, R., Valentini, P.P., Vita, L.: Modeling of hydrodynamic journal bearing in spatial multibody systems. In: ASME International Design Engineering Technical Conference, California, USA, DETC2005-84858 (2005)

    Google Scholar 

  12. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  Google Scholar 

  13. Daniel, G.B., Cavalca, K.L.: Analysis of the dynamics of a slider–crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance. Mech. Mach. Theory 46(10), 1434–1452 (2011)

    Article  Google Scholar 

  14. Erkaya, S., Uzmay, I.: A neural-genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20(1), 69–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Srivastava, N., Haque, I.: Clearance and friction-induced dynamics of chain CVT drives. Multibody Syst. Dyn. 19(3), 255–280 (2008)

    Article  MATH  Google Scholar 

  16. Erkaya, S., Uzmay, I.: Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech. Mach. Theory 44, 222–234 (2009)

    Article  MATH  Google Scholar 

  17. Erkaya, S., Uzmay, I.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 59, 179–198 (2009)

    Article  Google Scholar 

  18. Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60, 459–478 (2010)

    Article  MATH  Google Scholar 

  19. Brutti, C., Coglitore, C., Valentini, P.P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66(4), 531–548 (2011)

    Article  Google Scholar 

  20. Khemili, I., Romdhane, L.: Dynamic analysis of a flexible slider–crank mechanism with clearance. Eur. J. Mech. A, Solids 27(5), 882–898 (2008)

    Article  MATH  Google Scholar 

  21. Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65(4), 383–398 (2011)

    Article  Google Scholar 

  22. Erkaya, S., Uzmay, I.: Experimental investigation of joint clearance effects on the dynamics of a slider–crank mechanism. Multibody Syst. Dyn. 24, 81–102 (2010)

    Article  MATH  Google Scholar 

  23. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2009)

    Article  Google Scholar 

  24. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60, 99–114 (2010)

    Article  MATH  Google Scholar 

  25. Bauchau, O.A., Rodriguez, J.: Modelling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39, 41–63 (2002)

    Article  MATH  Google Scholar 

  26. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Article  Google Scholar 

  27. Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic multibody road vehicle models for crashworthiness. Multibody Syst. Dyn. 19, 133–158 (2008)

    Article  MATH  Google Scholar 

  28. Ambrósio, J., Veríssimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009)

    Article  MATH  Google Scholar 

  29. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56(3), 277–295 (2009)

    Article  MATH  Google Scholar 

  30. Dowson, D., Taylor, C.M.: Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 35–66 (1979)

    Article  Google Scholar 

  31. Elrod, H.G.: A cavitation algorithm. J. Lubr. Technol. 103, 350–354 (1981)

    Article  Google Scholar 

  32. Woods, C.M., Brewe, D.E.: The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques. J. Tribol. 111, 302–308 (1989)

    Article  Google Scholar 

  33. Mistry, K., Biswas, S., Athre, K.: A new theoretical model for analysis of the fluid film in the cavitation zone of a journal bearing. J. Tribol. 119, 741–746 (1997)

    Article  Google Scholar 

  34. Miranda, A.A.S.: Oil flow, cavitation and film reformulation in journal bearings including interactive computer-aided design study. Ph.D. dissertation, Department of Mechanical Engineering, University of Leeds, United Kingdom (1983)

  35. Claro, J.C.P.: Reformulação de método de cálculo de chumaceiras radiais hidrodinâmicas—análise do desempenho considerando condições de alimentação. Ph.D. dissertation, Department of Mechanical Engineering, University of Minho, Guimarães, Portugal (1994)

  36. Costa, L.A.M.: Análise do desempenho de chumaceiras radiais hidrodinâmicas considerando efeitos térmicos. Ph.D. dissertation, Department of Mechanical Engineering, University of Minho, Guimarães, Portugal (2000)

  37. Brito, F.C.P.: Thermohydrodynamic performance of twin groove journal bearings considering realistic lubricant supply conditions: A theoretical and experimental study. Ph.D. dissertation, Department of Mechanical Engineering, University of Minho, Guimarães, Portugal (2009)

  38. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  MATH  Google Scholar 

  39. Phelan, R.M.: Fundamentals of Mechanical Design, 3rd edn. McGraw-Hill, New York (1970)

    Google Scholar 

  40. Dubois, G.B., Ocvirk, F.W.: Analytical derivation and experimental evaluation of short-bearing approximation for full journal bearings. NACA Rep. 1157 (1953)

  41. Sommerfeld, A.: Zur hydrodynamischen Theorie der Schmiermittelreibung. Z. Angew. Math. Phys. 50, 97–155 (1904)

    Google Scholar 

  42. ESDU 84031 Tribology series: calculation methods for steadily loaded axial groove hydrodynamic journal bearings. Engineering Sciences Data Unit, London, England (1991)

  43. Nikravesh, P.E.: Initial condition correction in multibody dynamics. Multibody Syst. Dyn. 18, 107–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Vol. I. Basic Methods. Allyn and Bacon, Boston (1989)

    Google Scholar 

  45. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  46. Flores, P., Machado, M., Seabra, E., Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019-9 (2011)

    Article  Google Scholar 

  47. Gear, W.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  48. Shampine, L., Gordon, M.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  49. Cunha, L.V.: Desenho Técnico, 8th edn. Fundação Calouste Gulbenkian, Lisboa (1990)

    Google Scholar 

  50. ANSY, Y14.5M-1994: Dimensional and Tolerancing. ASME, New York (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, M., Costa, J., Seabra, E. et al. The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dyn 69, 635–654 (2012). https://doi.org/10.1007/s11071-011-0293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0293-y

Keywords

Navigation