Skip to main content
Log in

On the continuous contact force models for soft materials in multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A general and comprehensive analysis on the continuous contact force models for soft materials in multibody dynamics is presented throughout this work. The force models are developed based on the foundation of the Hertz law together with a hysteresis damping parameter that accounts for the energy dissipation during the contact process. In a simple way, these contact force models are based on the analysis and development of three main issues: (i) the dissipated energy associated with the coefficient of restitution that includes the balance of kinetic energy and the conservation of the linear momentum between the initial and final instant of contact; (ii) the stored elastic energy, representing part of initial kinetic energy, which is evaluated as the work done by the contact force developed during the contact process; (iii) the dissipated energy due to internal damping, which is evaluated by modeling the contact process as a single degree-of- freedom system to obtain a hysteresis damping factor. This factor takes into account the geometrical and material properties, as well as the kinematic characteristics of the contacting bodies. This approach has the great merit that can be used for contact problems involving materials with low or moderate values of coefficient of restitution and, therefore, accommodate high amount of energy dissipation. In addition, the resulting contact force model is suitable to be included into the equations of motion of a multibody system and contributes to their stable numerical resolution. A demonstrative example of application is used to provide the results that support the analysis and discussion of procedures and methodologies described in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stolarsky, T.A.: Tribology in Machine Design. Butterworth-Heinemann, Stoneham-London (1990)

    Google Scholar 

  2. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Lecture Notes in Applied and Computational Mechanics, vol. 34. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Johnson, K.L.: One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 196, 363–378 (1982)

    Article  Google Scholar 

  4. Goldsmith, W.: Impact, The Theory and Physical Behaviour of Colliding Solids. Edward Arnold, Sevenoaks (1960)

    MATH  Google Scholar 

  5. Brach, R.M.: Mechanical Impact Dynamics, Rigid Body Collisions. Wiley, New York (1991)

    Google Scholar 

  6. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  7. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  9. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  10. Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004)

    Article  MATH  Google Scholar 

  12. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  13. Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic multibody road vehicle models for crashworthiness. Multibody Syst. Dyn. 19, 133–158 (2008)

    Article  MATH  Google Scholar 

  15. Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn. 21, 37–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Djerassi, S.: Collision with friction; Part B: Poisson’s and Stronge’s hypotheses. Multibody Syst. Dyn. 21, 55–70 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dopico, D., Luaces, A., Gonzalez, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst. Dyn. doi:10.1007/s11044-010-9230-y (2011)

    MATH  Google Scholar 

  19. Ambrósio, J., Veríssimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009)

    Article  MATH  Google Scholar 

  20. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268(5–6), 643–652 (2010)

    Article  Google Scholar 

  21. Choi, J., Ryu, H.S., Kim, C.H., Choi, J.H.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99–120 (2010)

    Article  MATH  Google Scholar 

  22. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  23. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  25. Ryan, R.R.: ADAMS-Multibody System Analysis Software, Multibody Systems Handbook. Springer, Berlin (1990)

    Google Scholar 

  26. Smith, R.C., Haug, E.J.: DADS-Dynamic Analysis and Design System, Multibody Systems Handbook. Springer, Berlin (1990)

    Google Scholar 

  27. Visual NASTRAN 4D, MSC Software (2002)

  28. Lee, T.W., Wang, A.C.: On the dynamics of intermittent-motion mechanisms, part 1: dynamic model and response. J. Mech. Transm. Autom. Des. 105, 534–540 (1983)

    Article  Google Scholar 

  29. Jackson, R.L., Green, I., Marghitu, D.B.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn. 60(3), 217–229 (2010)

    Article  MATH  Google Scholar 

  30. Barkan, P.: Impact design. In: Mechanical Design and Systems Handbook, McGraw-Hill, New York (1974). Section 31

    Google Scholar 

  31. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  32. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  33. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  34. Shivaswamy, S.: Modeling contact forces and energy dissipation during impact in multibody mechanical systems. Ph.D. Dissertation, Wichita State University, Wichita, Kansas (1997)

  35. Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)

    Article  MATH  Google Scholar 

  36. Meireles, S., Completo, A., Simões, J.A., Flores, P.: Strain shielding in distal femur after patellofemoral arthroplasty under different activity conditions. J. Biomech. 43(3), 477–484 (2010)

    Article  Google Scholar 

  37. Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26, 777–789 (2004)

    Article  Google Scholar 

  38. Lin, Y.-C., Walter, J.P., Banks, S.A., Pandy, M.G., Fregly, B.J.: Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43, 945–952 (2010)

    Article  Google Scholar 

  39. Burgin, L.V., Aspen, R.M.: Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J. Mater. Sci., Mater. Med. 19, 703–711 (2008)

    Article  Google Scholar 

  40. Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123, 599–606 (2001)

    Article  Google Scholar 

  41. Silva, P.C., Silva, M.T., Martins, J.M.: Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Syst. Dyn. 24, 367–388 (2010)

    Article  MATH  Google Scholar 

  42. Lankarani, H.M.: Canonical equations of motion and estimation of parameters in the analysis of impact problems. Ph.D. Dissertation, University of Arizona, Tucson, Arizona (1988)

  43. Ye, K., Li, L., Zhu, H.: A note on the Hertz contact model with nonlinear damping for pounding simulation. Earthquake Eng. Struct. Dyn. 38, 1135–1142 (2009)

    Article  Google Scholar 

  44. Hertz, H.: On the contact of solids—on the contact of rigid elastic solids and on hardness. In: Miscellaneous Papers, pp. 146–183. Macmillan and Co., London (1896) (Translated by D.E. Jones and G.A. Schott)

    Google Scholar 

  45. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw Hill, New York (1970)

    MATH  Google Scholar 

  46. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22, 213–224 (1987)

    Article  Google Scholar 

  47. Marhefka, D.W., Orin, D.E.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybern., Part A, Syst. Humans 29(6), 566–572 (1999)

    Article  Google Scholar 

  48. Bibalan, P.T., Featherstone, R.: A study of soft contact models in simulink. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA), 2–4 December 2009, Sydney, Australia (2009). 8 p.

    Google Scholar 

  49. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Article  Google Scholar 

  51. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  52. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    Article  MATH  Google Scholar 

  53. Ambrósio, J., Veríssimo, P.: Sensitivity of a vehicle ride to the suspension bushing characteristics. J. Mech. Sci. Technol. 23, 1075–1082 (2009)

    Article  Google Scholar 

  54. Beer, F.B., Johnston, E.R.: Vector mechanics for engineers. Statics and Dynamics (1997)

  55. Greenwood, D.T.: Principles of Dynamics. Englewood Cliffs, Prentice Hall (1965)

    Google Scholar 

  56. Maw, N., Barber, J.R., Fawcett, J.N.: The oblique impact of elastic spheres. Wear, 101–114 (1975)

  57. Zukas, J.A., Nicholas, T., Greszczuk, L.B., Curran, D.R.: Impact Dynamics. Wiley, New York (1982)

    Google Scholar 

  58. Hartog, J.P.: Mechanical Vibrations. Dover, New York (1985)

    Google Scholar 

  59. Steidel, R.F.: An Introduction to Mechanical Vibrations, 3rd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  60. Flores, P.: Contact-impact analysis in multibody systems based on the nonsmooth dynamics approach. Post Doctoral Report, ETH-Zurich, Switzerland (2009)

  61. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  62. Flores, P.: MUBODYNA—A FORTRAN program for dynamic analysis of planar multibody systems. University of Minho, Guimarães, Portugal (2010)

  63. Piskounov, N.: Cálculo Diferencial e Integral. Edições Lopes da Silva, Porto, Portugal (1990)

  64. Atkinson, K.A.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, P., Machado, M., Silva, M.T. et al. On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst Dyn 25, 357–375 (2011). https://doi.org/10.1007/s11044-010-9237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9237-4

Keywords

Navigation