Skip to main content
Log in

Frictional contact analysis of spatial prismatic joints in multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The contact analysis of spatial prismatic joints remains a hard problem due to its complex nature. In this paper, a methodology for the frictional contact analysis of rigid multibody systems with spatial prismatic joints is presented, which is free of calculating the relative motion between the slider and guide, and is particularly suitable to the case of clearances being tiny. Under the assumption of the slider and guide being rigid, we prove that all types of contacts in the joint can be converted to point-to-point contacts. At each of the candidate points, two gap functions are introduced. However, in the proposed method, not the values of these gap functions but the relations between them are essential. In view of the non-colliding contacts being predominant when clearances of joints are tiny, we formulate the contact forces in terms of resultant frictional forces in the joint, resulting in a linear complementarity problem. By the proposed method, details about the contacts including the impact instants can be obtained, although impacts are not taken into consideration explicitly, as indicated by the numerical examples in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopes, D.S., Silva, M.T., Ambrósio, J.A., Flores, P.: A mathematical framework for contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24(3), 255–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. García Orden, J.C.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13, 401–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  6. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7(4), 471–497 (1995)

    Article  MathSciNet  Google Scholar 

  7. Glocker, C.: Concepts for modeling impacts without friction. Acta Mech. 168(1–2), 1–19 (2004)

    Article  MATH  Google Scholar 

  8. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  10. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22, 213–224 (1987)

    Article  Google Scholar 

  11. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    Article  MATH  Google Scholar 

  12. Dopico, D., Luaces, A., Gonzalez, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst. Dyn. 25(2), 167–183 (2011)

    Article  MathSciNet  Google Scholar 

  13. Haines, R.S.: Survey: 2-dimensional motion and impact at revolute joints. Mech. Mach. Theory 15, 361–370 (1980)

    Article  Google Scholar 

  14. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998)

    Article  MATH  Google Scholar 

  15. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  16. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamic behaviour of planar rigid multibody systems including revolute joints with clearance. J. Multi-Body Dyn. 221(2), 161–174 (2007). Proceedings of the Institution of Mechanical Engineers, Part—K

    Google Scholar 

  17. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bing, S., Ye, J.: Dynamic analysis of the reheat–stop–valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory 43(12), 1625–1638 (2008)

    Article  MATH  Google Scholar 

  19. Erkaya, S., Uzmay, I.: A neural-genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20(1), 69–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and dynamics of multibody systems with imperfect joints: models and case studies. In: Lecture Notes in Applied and Computational Mechanic, vol. 34. Springer, Berlin (2008)

    Google Scholar 

  21. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1, 240–247 (2006)

    Article  Google Scholar 

  22. Liu, C.S., Zhang, K., Yang, L.: Normal force–displacement relationship of spherical joints with clearances. J. Comput. Nonlinear Dyn. 1(2), 160–167 (2006)

    Article  Google Scholar 

  23. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact–impact force model on the dynamic response of multibody systems. J. Multi-Body Dyn. 220(1), 21–34 (2006). Proceedings of the Institution of Mechanical Engineers, Part—K

    Google Scholar 

  24. Srivastava, N., Haque, I.: Clearance and friction-induced dynamics of chain CVT drives. Multibody Syst. Dyn. 19(3), 255–280 (2008)

    Article  MATH  Google Scholar 

  25. Wilson, R., Fawcett, J.N.: Dynamics of the slider–crank mechanism with clearance in the sliding bearing. Mech. Mach. Theory 9, 61–80 (1974)

    Article  Google Scholar 

  26. Farahanchi, F., Shaw, S.: Chaotic and periodic dynamics of a slider–crank mechanism with slider clearance. J. Sound Vib. 177(3), 307–324 (1994)

    Article  MATH  Google Scholar 

  27. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 011007-10 (2008)

    Article  Google Scholar 

  28. Flores, P., Leine, R.I., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  29. Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Comput. Graph. 23, 223–232 (1989)

    Google Scholar 

  30. Glocker, C.: Formulation of spatial contact situations in rigid multibody systems. Comput. Methods Appl. Mech. Eng. 177, 199–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qi, Z., Xu, Y., Luo, X., Yao, S.: Recursive formulation of multibody systems with frictional joints. Multibody Syst. Dyn. 24(2), 133–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A, Solids 22(2), 193–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kosenko, I.I., Aleksandrov, E.V.: Implementation of the Contensou–Erismann tangent forces model in the Hertz contact problem. Multibody Syst. Dyn. 24, 281–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rooney, G.T., Deravi, P.: Coulomb friction in mechanism sliding joints. Mech. Mach. Theory 17(3), 207–211 (1982)

    Article  Google Scholar 

  37. The C++ version of Adams/Solver: MSC Software Corporation (2005)

  38. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Z., Luo, X. & Huang, Z. Frictional contact analysis of spatial prismatic joints in multibody systems. Multibody Syst Dyn 26, 441–468 (2011). https://doi.org/10.1007/s11044-011-9264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9264-9

Keywords

Navigation