Skip to main content
Log in

Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The spike characteristics length, spikelet density and fertile floret number are related yield components and are important in cereal improvement. QSpl.nau-2D is a major quantitative trait locus controlling spike length (SPL) detected in the recombinant inbred line population developed by crossing wheat (Triticum aestivum) cultivars Nanda2419 with Wangshuibai. In this study, to validate its genetic effect and determine its precise location, QSpl.nau-2D’s near-isogenic line (NIL) was developed using Mianyang99-323 as the recurrent parent through marker-assisted selection. Field trials showed that the NIL not only had significantly longer spikes on average than the recurrent parent but also had significantly higher grain weight, but did not differ in spikelet number and kernel number per spike. In the F2 population derived from a cross of the NIL with Mianyang99-323, QSpl.nau-2D functioned like a single gene and conditioned the SPL in a partially dominant manner, and was thus designated as HL1 (for head length). To precisely map HL1, 89 recombinants, consisting of 11 genotypes, were identified in the NIL-derived F2 population of 674 plants by using markers in the Xwmc25Xgpw4080 interval. Phenotyping these lines showed that the introduction of a 0.9-cM interval flanked by Xcfd53 and DG371 in Nanda2419 resulted in longer spikes and a higher grain weight in the NIL. The availability of markers closely linked to HL1 could facilitate its use in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araus JL, Brown HR, Febrero A, Bort J, Serret MD (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ 16:383–392. doi:10.1111/j.1365-3040.1993.tb00884.x

    Article  CAS  Google Scholar 

  • Bassam BJ, Gaetano-Anollé G, GresshoV PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83. doi:10.1016/0003-2697(91)90120-I

    Article  CAS  PubMed  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP–SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472. doi:10.1007/s00122-005-1981-0

    Article  CAS  PubMed  Google Scholar 

  • Bort J, Febrero A, Amaro T, Araus JL (1994) Role of awns in ear water-use efficiency and grain weight in barley. Agronomie 2:133–139. doi:10.1051/agro:19940209

    Article  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26. doi:10.1111/j.1439-0523.2008.01550.x

    Article  CAS  Google Scholar 

  • Chen GD, Li HB, Zheng Z, Wei YM, Zheng YL, Mclntyre CL, Zhou MX, Liu CJ (2012) Characterization of a QTL affecting spike morphology on the long arm of chromosome 3H in barley (Hordeum vulgare L.) based on near isogenic lines and a NIL-derived population. Theor Appl Genet 125:1385–1392. doi:10.1007/s00122-012-1918-3

    Article  CAS  PubMed  Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266. doi:10.1007/s11032-008-9171-9

    Article  CAS  Google Scholar 

  • Cui F, Ding AM, Li J, Zhao CH, Wang L, Wang XQ, Qi XL, Li XF, Li GY, Gao JR, Wang HG (2012) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192. doi:10.1007/s10681-011-0550-7

    Article  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472. doi:10.1007/s00122-006-0249-7

    Article  CAS  PubMed  Google Scholar 

  • Deng SM, Wu XR, Wu YY, Zhou RH, Wang HG, Jia JZ, Liu SB (2011) Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet 122:281–289. doi:10.1007/s00122-010-1443-1

    Article  PubMed  Google Scholar 

  • Donmez E, Sears RG, Shroyer JP, Paulsen GM (2001) Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci 41:1412–1419. doi:10.2135/cropsci2001.4151412x

    Article  Google Scholar 

  • Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436. doi:10.1093/jxb/ers138

    Article  CAS  PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040. doi:10.1007/s00122-002-1111-1

    CAS  PubMed  Google Scholar 

  • Guo ZA, Song YX, Zhou RH, Ren ZL, Jia JZ (2010) Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol 185:841–851. doi:10.1111/j.1469-8137.2009.03099.x

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161. doi:10.1007/s11032-009-9359-7

    Article  Google Scholar 

  • Huang XQ, Cloutier LycarL, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766. doi:10.1007/s00122-006-0346-7

    Article  CAS  PubMed  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273. doi:10.1007/s00122-003-1432-8

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139. doi:10.1007/s00122-013-2123-8

    Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109. doi:10.1007/s001220050845

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177. doi:10.1007/s11032-006-9056-8

    Article  Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationship of tiller and spike characters in wheat. Euphytica 125:357–366. doi:10.1023/A:1016069809977

    Article  CAS  Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: type I resistance. Theor Appl Genet 112:528–535

    Article  CAS  PubMed  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP Version 3.0. Technical Report, 3rd edn. Whitehead Institute, Cambridge

  • Ma ZQ, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143

    Article  CAS  Google Scholar 

  • Ma ZQ, Röder MS, Sorrells ME (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123–130. doi:10.1139/g96-017

    Article  CAS  PubMed  Google Scholar 

  • Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42. doi:10.1007/s00438-006-0166-0

    Article  CAS  PubMed  Google Scholar 

  • Maydup ML, Antonietta M, Guiamet JJ, Graciano C, López JR, Tambussi EA (2010) The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Res 119:48–58

    Article  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386. doi:10.1111/j.1439-0523.1995.tb00816.x

    Article  Google Scholar 

  • Moghaddam M, Ehdaie B, Waines JG (1997) Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southeastern Iran. Euphytica 95:361–369

    Article  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242. doi:10.1007/s00122-003-1361-6

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  Google Scholar 

  • Pestsova E, Röder M (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91. doi:10.1007/s00122-002-0998-x

    CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi:10.1007/s00122-004-1902-7

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixer MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Huang XQ, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8:79–86. doi:10.1007/s10142-007-0053-8

    Article  PubMed  Google Scholar 

  • Sánchez-Díaz M, García JL, Antolín MC, Araus JL (2002) Effects of soil drought and atmospheric humidity on yield, gas exchange and stable carbon composition of barley. Photosynthetica 40:415–442. doi:10.1023/A:1022683210334

    Article  Google Scholar 

  • Schuler SF, Bacon RK, Gbur EE (1994) Kernel and spike character influence on test weight of soft red winter wheat. Crop Sci 34:1309–1313

    Article  Google Scholar 

  • Shahinnia F, Druka A, Franckowiak J, Morgante M, Waugh R, Stein N (2012) High resolution mapping of dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theor Appl Genet 124:373–384. doi:10.1007/s00122-011-1712-7

    Article  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. doi:10.1038/ng2014

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538. doi:10.1007/s00122-002-1044-8

    CAS  PubMed  Google Scholar 

  • Su JY, Zheng Q, Li HW, Li B, Jing RL, Tong YP, Li ZS (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Suenaga K, Khairallah M, William HM, Hoisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48:65–75. doi:10.1139/G04-092

    Article  CAS  PubMed  Google Scholar 

  • Tambussi EA, Bort J, Guiamet JJ, Nogués S, Araus JL (2007) The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci 26:1–16. doi:10.1080/07352680601147901

    Article  CAS  Google Scholar 

  • Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514. doi:10.1534/genetics.105.050500

    Article  CAS  PubMed  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051. doi:10.1007/s00122-006-0206-5

    Article  CAS  PubMed  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57. doi:10.1007/BF00015718

    Article  Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod on the adaptability of European winter wheats. Euphytica 100:385–394. doi:10.1023/A:1018327700985

    Article  CAS  Google Scholar 

  • Worland AJ, Sayers EJ, Korzun V (2001) Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica 119:155–159. doi:10.1023/A:1017582122775

    Article  CAS  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhao DM, Zhu HL, Xu HB, Wu JZ, Tian DG, Zhang CQ, Ma ZQ (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189. doi:10.1007/s00122-008-0764-9

    Article  CAS  PubMed  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Xu F, Lin F, Tang MZ, Wang Y, An X, Xu HB, Zhang LX, Kong ZX, Ma ZQ (2010) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156. doi:10.1007/s00122-010-1298-5

    Article  PubMed  Google Scholar 

  • Xue SL, Xu F, Tang MZ, Zhou Y, Li GQ, An X, Lin F, Xu HB, Jia HY, Zhang LX, Kong ZX, Ma ZQ (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063. doi:10.1007/s00122-011-1647-z

    Article  PubMed  Google Scholar 

  • Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z, Su X, Xu X, Jiang G, Zhang S, Jia H, Kong Z, Zhang L, Ma Z (2013) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949. doi:10.1007/s00122-013-2108-7

  • You FM, Huo N, Deal KR, Gu YQ, Luo MC, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59. doi:10.1186/1471-2164-12-59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mingcheng Luo at University of California, Davis, for providing SNP sequences. This study was partially supported by ‘973’ program (2011CB100103), ‘863’ program (2012AA101105), NSFC programs (30025030, 30721140555), Seed Funds for the Central Universities (2012), ‘111’ project B08025, and PAPD project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Cheng, R., Xue, S. et al. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breeding 33, 129–138 (2014). https://doi.org/10.1007/s11032-013-9939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9939-4

Keywords

Navigation