Skip to main content
Log in

Isolation of microcrystalline cellulose from Musa paradisiaca (banana) plant leaves: physicochemical, thermal, morphological, and mechanical characterization for lightweight polymer composite applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Natural cellulose owing to its remarkable microstructural and physiochemical behaviour, and its eco-friendliness have attracted significant interest among the researchers. Therefore, in this work, microcrystalline cellulose (MCC) is extracted from the Musa paradisiaca plant leaf (MPPL) debris which is accumulated in large quantity and treated as waste material. The purified micro-cellulose is obtained by subjecting the MPPL raw material to alkali treatment followed by acid hydrolysis, bleaching and slow pyrolysis. From the FT-IR spectra of the cleaned cellulose, it is observed that its amorphous phase is eliminated. The crystallinity index is found to be 87.42% and this value is attributed to the sodium chlorite bleaching. The particle size analyzer results show that the micro-cellulose found to have a bimodal distribution with an average size of 35.97 μm and standard deviation 16.53. It is evident from SEM that the microcrystalline cellulose is of semi-spherical in shape and found to be aggregated with uneven distribution. Further, TGA analysis is carried out in this work and the results show that the microcrystalline cellulose can exhibit high heat resistance up to 297 °C. Surface roughness values (Ra) for MPPL MCC is 58.41 μm. The properties are well suited for futuristic polymer composite applications such as filler addition in biofilm for packaging industries and coating material in pharma industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

My manuscript has no associated data.

References

  1. Amjad A, Anjang A, Abidin MSZ (2022) Effect of nanofiller concentration on the density and void content of natural fiber-reinforced epoxy composites. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02839-w

    Article  Google Scholar 

  2. Mahalingam J (2022) Mechanical, thermal, and water absorption properties of hybrid short coconut tree primary flower leaf stalk fiber/glass fiber-reinforced unsaturated polyester composites for biomedical applications. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02958-4

    Article  Google Scholar 

  3. Sabarinathan P, Annamalai VE, Rajkumar K et al (2022) Synthesis and characterization of randomly oriented silane-grafted novel bio-cellulosic fish tail palm fiber–reinforced vinyl ester composite. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02459-4

    Article  Google Scholar 

  4. Rantheesh J, Indran S, Raja S et al (2022) Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro industrial residual waste oil cake for futuristic applications. Biomass Convers Biorefin 1:19–21. https://doi.org/10.1007/s13399-022-03467-0

    Article  CAS  Google Scholar 

  5. Sundaram RS, Rajamoni R, Suyambulingam I, Isaac R (2021) Comprehensive characterization of industrially discarded cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: effect of fiber length and weight fraction. J Nat Fibers 00:1–16. https://doi.org/10.1080/15440478.2021.1944435

    Article  CAS  Google Scholar 

  6. Jagadeesan R, Suyambulingam I, Somasundaram R et al (2023) Isolation and characterization of novel microcellulose from Sesamum indicum agro-industrial residual waste oil cake: conversion of biowaste to wealth approach. Biomass Convers Biorefinery 2023 1:1–15. https://doi.org/10.1007/S13399-022-03690-9

    Article  Google Scholar 

  7. Tkachenko T, Sheludko Y, Yevdokymenko V et al (2022) Physico-chemical properties of flax microcrystalline cellulose. ApNan 12:1007–1020. https://doi.org/10.1007/S13204-021-01819-2

    Article  CAS  Google Scholar 

  8. Diarsa M, Gupte A (2021) Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers. 3 Biotech 11:1–13. https://doi.org/10.1007/S13205-021-02838-0/TABLES/4

    Article  Google Scholar 

  9. Ibrahim RA (2015) Tribological performance of polyester composites reinforced by agricultural wastes. Tribol Int 90:463–466. https://doi.org/10.1016/j.triboint.2015.04.042

    Article  CAS  Google Scholar 

  10. Divya D, Gopinath LR, Indran S et al (2015) Coden: IJPAJX-CAS-USA, Copyrights @ 2015 ISSN-2231-4490. Enhancement of biogas production through sustainable feedstock utilization by co-digestion. Department of Biotechnology, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Deprtme. IJPAES 5:88–95

    CAS  Google Scholar 

  11. Indran S, Divya D, Rangappa SM et al (2021) Perspectives of anaerobic decomposition of biomass for sustainable biogas production: a review. E3S Web Conf 302:01015. https://doi.org/10.1051/e3sconf/202130201015

    Article  CAS  Google Scholar 

  12. Iyyadurai J, Gandhi VCS, Suyambulingam I, Rajeshkumar G (2021) Sustainable development of Cissus quadrangularis stem fiber/epoxy composite on abrasive wear rate. J Nat Fibers 00:1–13. https://doi.org/10.1080/15440478.2021.1982819

    Article  CAS  Google Scholar 

  13. Ibrahim I, Al-Obaidi Y, Hussin S (2015) Removal of methylene blue using cellulose nanocrystal synthesized from cotton by ultrasonic technique. Am Chem Sci J 9:1–7. https://doi.org/10.9734/ACSJ/2015/20031

    Article  CAS  Google Scholar 

  14. Thielemans K, De Bondt Y, Van den Bosch S et al (2022) Decreasing the degree of polymerization of microcrystalline cellulose by mechanical impact and acid hydrolysis. Carbohydr Polym 294:119764. https://doi.org/10.1016/J.CARBPOL.2022.119764

    Article  CAS  PubMed  Google Scholar 

  15. Arul Marcel Moshi A, Ravindran D, Sundara Bharathi SR et al (2020) Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. Int J Biol Macromol 164:1246–1255

    Article  CAS  Google Scholar 

  16. Gonçalves de Moura I, Vasconcelos de Sá A, Lemos Machado Abreu AS, Alves Machado AV (2017) Bioplastics from agro-wastes for food packaging applications. Elsevier Inc.

    Book  Google Scholar 

  17. Diarsa M, Gupte A (2021) Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers. 3 Biotech 11:1–13. https://doi.org/10.1007/s13205-021-02838-0

    Article  Google Scholar 

  18. Shafqat A, Al-Zaqri N, Tahir A, Alsalme A (2021) Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi J Biol Sci 28:1739–1749. https://doi.org/10.1016/j.sjbs.2020.12.015

    Article  CAS  PubMed  Google Scholar 

  19. Baruah J, Bardhan P, Mukherjee AK et al (2022) Integrated pretreatment of banana agrowastes: structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. Int J Biol Macromol 201:298–307. https://doi.org/10.1016/j.ijbiomac.2021.12.179

    Article  CAS  PubMed  Google Scholar 

  20. Padam BS, Tin HS, Chye FY, Abdullah MI (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51:3527–3545. https://doi.org/10.1007/s13197-012-0861-2

    Article  CAS  PubMed  Google Scholar 

  21. Subash M, Perumalsamy M (2022) Green degumming of banana pseudostem fibers for yarn manufacturing in textile industries. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02850-1

    Article  Google Scholar 

  22. Buendia-Kandia F, Brosse N, Petitjean D et al (2020) Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers Biorefin 10:1–13. https://doi.org/10.1007/s13399-019-00395-4

    Article  CAS  Google Scholar 

  23. Corsello FA, Bolla PA, Anbinder PS et al (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr Polym 156:452–459

    Article  CAS  PubMed  Google Scholar 

  24. Sangian HF, Maneking E, Tongkukut SHJ et al (2021) Study of SEM, XRD, TGA, and DSC of Cassava Bioplastics catalyzed by ethanol. IOP Conf Ser Mater Sci Eng 1115:012052. https://doi.org/10.1088/1757-899x/1115/1/012052

    Article  CAS  Google Scholar 

  25. van der Wal H, Sperber BLHM, Houweling-Tan B et al (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437. https://doi.org/10.1016/j.biortech.2012.10.094

    Article  CAS  PubMed  Google Scholar 

  26. Ganguly P, Sengupta S, Das P, Bhowal A (2020) Valorization of food waste: extraction of cellulose, lignin and their application in energy use and water treatment. Fuel 280:118581. https://doi.org/10.1016/j.fuel.2020.118581

    Article  CAS  Google Scholar 

  27. Ibrahim MM, El-Zawawy WK, Jüttke Y et al (2013) Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose 20:2403–2416. https://doi.org/10.1007/s10570-013-9992-5

    Article  CAS  Google Scholar 

  28. Babu BG, Princewinston D, Saravanakumar SS et al (2022) Investigation on the physicochemical and mechanical properties of novel alkali-treated phaseolus vulgaris fibers. J Nat Fibers 19:770–781. https://doi.org/10.1080/15440478.2020.1761930

    Article  CAS  Google Scholar 

  29. Sundaram RS, Rajamoni R, Suyambulingam I, Isaac R (2021) Comprehensive characterization of industrially discarded cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: effect of fiber length and weight fraction. J Nat Fibers 00:1–16. https://doi.org/10.1080/15440478.2021.1944435

    Article  CAS  Google Scholar 

  30. Segal, Creely JJ, Conrad M (1958) Empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  31. Scherrer P (1918) Bestimmung Der Größe Und Der Inneren Struktur Von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten Von Der Gesellschaft Der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 98–100

  32. Pulikkalparambil H, Kumar MS, Babu A et al (2023) Effect of graphite fillers on woven bamboo fiber reinforced epoxy hybrid composites for semistructural applications: fabrication and characterization. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03811-y

    Article  Google Scholar 

  33. Bettaieb F, Khiari R, Dufresne A et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104. https://doi.org/10.1016/j.carbpol.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  34. Rangappa AV, Srisuk SM et al (2023) Agro-waste Capsicum Annum stem: an alternative raw material for lightweight composites. Ind Crops Prod 193:116141. https://doi.org/10.1016/j.indcrop.2022.116141

    Article  CAS  Google Scholar 

  35. Beroual M, Boumaza L, Mehelli O et al (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29:130–142. https://doi.org/10.1007/s10924-020-01858-w

    Article  CAS  Google Scholar 

  36. Mandal BK, Mandal R, Limbu D et al (2022) Green synthesis of AgCl nanoparticles using Calotropis gigantea: characterization and their enhanced antibacterial activities. Chem Phys Lett 801:139699. https://doi.org/10.1016/j.cplett.2022.139699

    Article  CAS  Google Scholar 

  37. Iyyadurai J, Sahayaraj F, Tamilselvan A, Srinivasan M (2023) Experimental investigation on mechanical, thermal, viscoelastic, water absorption, and biodegradability behavior of Sansevieria ehrenbergii fiber reinforced novel polymeric composite with the addition of coconut shell ash powder. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02537-8

    Article  Google Scholar 

  38. Jenish I, Gandhi VCS, Raj RE et al (2022) A new study on tribological performance of cissus quadrangularis stem fiber/epoxy with red mud filler composite. J Nat Fibers 19:3502–3516. https://doi.org/10.1080/15440478.2020.1848709

    Article  CAS  Google Scholar 

  39. Tavakolian M, Jafari SM, van de Ven TGM (2020) A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nanomicro Lett. https://doi.org/10.1007/s40820-020-0408-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. He X, Lu W, Sun C et al (2021) Cellulose and cellulose derivatives: different colloidal states and food-related applications. Carbohydr Polym 255:117334. https://doi.org/10.1016/j.carbpol.2020.117334

    Article  CAS  PubMed  Google Scholar 

  41. Reddy KO, Maheswari CU, Dhlamini MS et al (2018) Extraction and characterization of cellulose single fibers from native African napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

    Article  CAS  PubMed  Google Scholar 

  42. Sainorudin MH, Mohammad M, Kadir NHA et al (2018) Characterization of several microcrystalline cellulose (Mcc)-based agricultural wastes via x-ray diffraction method. Solid State Phenom 280 SSP:340–345. https://doi.org/10.4028/www.scientific.net/SSP.280.340

    Article  Google Scholar 

  43. Swati, Sehwag S, Das M (2015) A brief overview: present status on utilization of mustard oil and cake. Indian J Tradit Knowl 14:244–250

    Google Scholar 

  44. Xu L, Wang A, Li S et al (2022) Biomass residue cellulose-based poly(ionic liquid)s: new materials with selective metal ion adsorption. Biomass Convers Biorefin 12:3933–3942. https://doi.org/10.1007/s13399-020-00889-6

    Article  CAS  Google Scholar 

  45. Rashid S, Dutta H (2020) Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112627

    Article  Google Scholar 

  46. Abu-Thabit NY, Judeh AA, Hakeem AS et al (2020) Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L). Int J Biol Macromol 155:730–739. https://doi.org/10.1016/j.ijbiomac.2020.03.255

    Article  CAS  PubMed  Google Scholar 

  47. Tarchoun AF, Trache D, Klapötke TM (2019) Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int J Biol Macromol 138:837–845. https://doi.org/10.1016/j.ijbiomac.2019.07.176

    Article  CAS  PubMed  Google Scholar 

  48. Sunesh NP, Indran S, Divya D, Suchart S (2022) Isolation and characterization of novel agrowaste-based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement. Polym Compos 43:6476–6488. https://doi.org/10.1002/pc.26960

    Article  CAS  Google Scholar 

  49. Sumesh KR, Kavimani V, Rajeshkumar G et al (2022) Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. J Ind Text 51:5910S-5937S

    Article  CAS  Google Scholar 

  50. Hassan AA, Abbas A, Rasheed T et al (2019) Development, influencing parameters and interactions of bioplasticizers: an environmentally friendlier alternative to petro industry-based sources. Sci Total Environ 682:394–404. https://doi.org/10.1016/j.scitotenv.2019.05.140

    Article  CAS  PubMed  Google Scholar 

  51. Nagarajan KJ, Balaji AN, Basha KS et al (2020) Effect of agro waste α-cellulosic micro filler on mechanical and thermal behavior of epoxy composites. Int J Biol Macromol 152:327–339. https://doi.org/10.1016/j.ijbiomac.2020.02.255

    Article  CAS  PubMed  Google Scholar 

  52. Uma Maheswari C, Obi Reddy K, Muzenda E et al (2012) Extraction and characterization of cellulose microfibrils from agricultural residue - Cocos nucifera L. Biomass Bioenergy 46:555–563. https://doi.org/10.1016/j.biombioe.2012.06.039

    Article  CAS  Google Scholar 

  53. Harini K, Chandra Mohan C (2020) Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse. Int J Biol Macromol 163:1375–1383. https://doi.org/10.1016/j.ijbiomac.2020.07.239

    Article  CAS  PubMed  Google Scholar 

  54. Kalpana VP, Perarasu VT (2020) Analysis on cellulose extraction from hybrid biomass for improved crystallinity. J Mol Struct 1217:128350. https://doi.org/10.1016/j.molstruc.2020.128350

    Article  CAS  Google Scholar 

  55. Ibrahim HM, Zaghloul S, Hashem M, El-Shafei A (2021) A green approach to improve the antibacterial properties of cellulose based fabrics using Moringa oleifera extract in presence of silver nanoparticles. Cellulose 28:549–564. https://doi.org/10.1007/s10570-020-03518-7

    Article  CAS  Google Scholar 

  56. El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10. https://doi.org/10.1016/j.carbpol.2006.04.009

    Article  CAS  Google Scholar 

  57. Motaung TE, Mtibe A (2015) Alkali treatment and cellulose nanowhiskers extracted from maize stalk residues. Mater Sci Appl 06:1022–1032. https://doi.org/10.4236/msa.2015.611102

    Article  CAS  Google Scholar 

  58. Nandi P, Das D (2022) Mechanical, thermo-mechanical and biodegradation behaviors of green-composites prepared from woven structural nettle (Girardinia diversifolia) reinforcement and poly(lactic acid) fibers. Ind Crops Prod 175:114247. https://doi.org/10.1016/j.indcrop.2021.114247

    Article  CAS  Google Scholar 

  59. Kian LK, Saba N, Jawaid M, Sultan MTH (2019) A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int J Biol Macromol 121:1314–1328. https://doi.org/10.1016/j.ijbiomac.2018.09.040

    Article  CAS  PubMed  Google Scholar 

  60. Gupta US, Tiwari S (2022) Mechanical and surface characterization of sisal fibers after cold glow discharge argon plasma treatment. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03247-w

    Article  Google Scholar 

  61. Ren H, Shen J, Pei J et al (2019) Characteristic microcrystalline cellulose extracted by combined acid and enzyme hydrolysis of sweet sorghum. Cellulose 26:8367–8381. https://doi.org/10.1007/s10570-019-02712-6

    Article  CAS  Google Scholar 

  62. Collazo-Bigliardi S, Ortega-Toro R, Chiralt A (2019) Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packag Shelf Life 22:100423. https://doi.org/10.1016/j.fpsl.2019.100423

    Article  Google Scholar 

  63. Shafqat A, Al-Zaqri N, Tahir A, Alsalme A (2021) Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi J Biol Sci 28:1739–1749

    Article  CAS  PubMed  Google Scholar 

  64. Sourkouni G, Kalogirou C, Moritz P et al (2021) Study on the influence of advanced treatment processes on the surface properties of polylactic acid for a bio-based circular economy for plastics. Ultrason Sonochem 76:105627. https://doi.org/10.1016/j.ultsonch.2021.105627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yaradoddi JS, Banapurmath NR, Ganachari SV et al (2021) Bio-based material from fruit waste of orange peel for industrial applications. J Mater Res Technol 17:3186–3197. https://doi.org/10.1016/j.jmrt.2021.09.016

    Article  CAS  Google Scholar 

  66. Singh JK, Rout AK (2022) Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03238-x

    Article  PubMed  PubMed Central  Google Scholar 

  67. Manikandan KM, Yelilarasi A, Senthamaraikannan P et al (2019) A green-nanocomposite film based on poly(vinyl alcohol)/ Eleusine coracana: structural, thermal, and morphological properties. Int J Polym Anal Charact 24:257–265. https://doi.org/10.1080/1023666X.2019.1567087

    Article  CAS  Google Scholar 

  68. Tengsuthiwat J, Vinod A, Srisuk R et al (2022) Thermo-mechanical characterization of new natural cellulose fiber from Zmioculus Zamiifolia. J Polym Environ 30:1391–1406. https://doi.org/10.1007/s10924-021-02284-2

    Article  CAS  Google Scholar 

  69. Mohan SJ, Devasahayam PSS, Suyambulingam I, Siengchin S (2022) Suitability characterization of novel cellulosic plant fiber from Ficus benjamina L. aerial root for a potential polymeric composite reinforcement. Polym Compos 43(12):9012–9026

    Article  CAS  Google Scholar 

  70. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  71. Mazuki NF, Nagao Y, Kufian MZ, Samsudin AS (2020) The influences of PLA into PMMA on crystallinity and thermal properties enhancement-based hybrid polymer in gel properties. Mater Today Proc 49:3105–3111. https://doi.org/10.1016/j.matpr.2020.11.037

    Article  CAS  Google Scholar 

  72. Thiangtham S, Runt J, Saito N, Manuspiya H (2020) Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method. Cellulose 27:1367–1384. https://doi.org/10.1007/s10570-019-02866-3

    Article  CAS  Google Scholar 

  73. Li M, He B, Zhao L (2019) Isolation and characterization of microcrystalline cellulose from Cotton Stalk Waste. BioResources 14:3231–3246. https://doi.org/10.15376/biores.14.2.3231-3246

    Article  CAS  Google Scholar 

  74. Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459. https://doi.org/10.1007/s10570-010-9481-z

    Article  CAS  Google Scholar 

  75. Ganesh Babu A, Saravanakumar SS (2022) Mechanical and physicochemical properties of green bio-films from poly(vinyl alcohol)/ nano rice hull fillers. Polym Bull 79:5365–5387. https://doi.org/10.1007/s00289-021-03757-z

    Article  CAS  Google Scholar 

  76. Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydr Polym 83:676–687. https://doi.org/10.1016/j.carbpol.2010.08.039

    Article  CAS  Google Scholar 

  77. Baruah J, Deka RC, Kalita E (2020) Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): statistical optimization. Int J Biol Macromol 154:672–682

    Article  CAS  PubMed  Google Scholar 

  78. Sunesh NP, Indran S, Divya D, Suchart S (2022) Isolation and characterization of novel agrowaste-based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement. Polym Compos 43:6476–6488

    Article  CAS  Google Scholar 

  79. Doh H, Dunno KD, Whiteside WS (2020) Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria Japonica and Sargassum natans. Food Hydrocoll 105:105744. https://doi.org/10.1016/j.foodhyd.2020.105744

    Article  Google Scholar 

  80. Wu J, Zhu W, Shi X et al (2020) Acid-free preparation and characterization of kelp (Laminaria Japonica) nanocelluloses and their application in Pickering emulsions. Carbohydr Polym 236:115999. https://doi.org/10.1016/j.carbpol.2020.115999

    Article  CAS  PubMed  Google Scholar 

  81. Mondal K, Sakurai S, Okahisa Y et al (2021) Effect of cellulose nanocrystals derived from Dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly(lactic acid). Carbohydr Polym 261:117881. https://doi.org/10.1016/j.carbpol.2021.117881

    Article  CAS  PubMed  Google Scholar 

  82. ArunRamnath R, Murugan S, Sanjay MR et al (2022) Characterization of novel natural cellulosic fibers from Abutilon Indicum for potential reinforcement in polymer composites. Polym Compos. https://doi.org/10.1002/pc.27100

    Article  Google Scholar 

  83. Vijay R, Vinod A, Lenin Singaravelu D et al (2021) Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass- a potential reinforcement for lightweight polymeric applications. Int J Lightweight Mater Manuf 4:43–49. https://doi.org/10.1016/j.ijlmm.2020.06.008

    Article  CAS  Google Scholar 

  84. Jawaid M, Kian LK, Alamery S et al (2022) Development and characterization of fire retardant nanofiller from date palm biomass. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03226-1

    Article  Google Scholar 

  85. Lakshmikandan M, Murugesan AG, Wang S, El-Fatah Abomohra A (2021) Optimization of acid hydrolysis on the green seaweed Valoniopsis pachynema and approach towards mixotrophic microalgal biomass and lipid production. Renew Energy 164:1052–1061. https://doi.org/10.1016/j.renene.2020.10.062

    Article  CAS  Google Scholar 

  86. Weinstein JE, Dekle JL, Leads RR, Hunter RA (2020) Degradation of bio-based and biodegradable plastics in a salt marsh habitat: another potential source of microplastics in coastal waters. Mar Pollut Bull 160:111518. https://doi.org/10.1016/j.marpolbul.2020.111518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu R, Zhao H, Xu X et al (2021) Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities. Environ Int 154:106560. https://doi.org/10.1016/j.envint.2021.106560

    Article  CAS  PubMed  Google Scholar 

  88. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859. https://doi.org/10.1016/j.carbpol.2009.12.043

    Article  CAS  Google Scholar 

  89. Yağmur HK, Kaya İ (2021) Synthesis and characterization of poly(urethane)/silver composites via in situ polymerization. Polym Compos 42:2704–2716. https://doi.org/10.1002/pc.26006

    Article  CAS  Google Scholar 

  90. Rasheed M, Jawaid M, Karim Z, Abdullah LC (2020) Morphological, physiochemical and thermal properties of Microcrystalline Cellulose (MCC) extracted from bamboo fiber. Molecules 25:2824. https://doi.org/10.3390/molecules25122824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Frei M, Kruis FE (2020) Image-based size analysis of agglomerated and partially sintered particles via convolutional neural networks. Powder Technol 360:324–336. https://doi.org/10.1016/j.powtec.2019.10.020

    Article  CAS  Google Scholar 

  92. Vandel E, Vaasma T, Sugita S (2020) Application of image analysis technique for measurement of sand grains in sediments. MethodsX 7:100981. https://doi.org/10.1016/j.mex.2020.100981

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fischer WJ, Mayr M, Spirk S et al (2017) Pulp fines-characterization, sheet formation, and comparison to microfibrillated cellulose. Polym (Basel). https://doi.org/10.3390/polym9080366

    Article  Google Scholar 

  94. Boga C, Koroglu T (2021) Proper estimation of surface roughness using hybrid intelligence based on artificial neural network and genetic algorithm. J Manuf Process 70:560–569. https://doi.org/10.1016/j.jmapro.2021.08.062

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

M. Indra Reddy: Conducted the experimental works and reported the primary results and written original manuscript. Prabhu Sethuramalingam: Planned the whole work, supervised, and corrected the main manuscript text. Ranjeet Kumar Sahu: Corrected the technical content in the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Prabhu Sethuramalingam.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.I., Sethuramalingam, P. & Sahu, R.K. Isolation of microcrystalline cellulose from Musa paradisiaca (banana) plant leaves: physicochemical, thermal, morphological, and mechanical characterization for lightweight polymer composite applications. J Polym Res 31, 114 (2024). https://doi.org/10.1007/s10965-024-03969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03969-7

Keywords

Navigation