Skip to main content
Log in

Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L.

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Natural fibers are biodegradable, lightweight, and low-cost in the creation of high performance engineered materials. The objective of this investigation is to comprehend the extraction procedure and characterization of natural cellulosic fibers extracted from Borassus flabellifer L. leaf. The obtained fibers were treated with sodium hydroxide solution to overcome the drawback of hydroxyl bonding. The essential properties of raw and treated fiber such as chemical composition, density, tensile strength, surface roughness, elements, functional group analysis, crystallinity index, crystallite size, maximum degradation temperature, and thermal stability were studied. The test result concluded that the alkali treatment improved the cellulose content while the hemicellulose, lignin, and wax content were reduced. This improved the tensile strength, density while the fiber weight decreased. The XRD analysis of raw and treated fiber confirmed the crystallinity index (50.34% from 46.58%) and crystallite size (2.72 nm from 2.36 nm) were improved after alkalization. The outcome of FTIR analysis confirmed the amorphous contents in borassus leaf fibers (BLF) were condensed due to the alkalization. The SEM analysis confirmed that the impurities and wax content of the outer surface of BLF were removed after alkali treatment. The result of TG analysis confirmed that the thermal stability temperature of alkali treated fiber had increased from 261 to 285 °C. The DTG analysis proved that the maximum fiber degradation temperature of alkali-treated BLF was increased from 316 to 365 °C. Thus, the surface modified fibers are appropriate materials for use as reinforcement in light weight high performance polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASTM:

American Standard Testing Methods

BLF:

Borassus leaf fiber

BLFs:

Borassus leaf fibers

DTG:

Derivative thermogravimetric

FTIR:

Fourier transform infrared

SEM:

Scanning electron microscope

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

References

  1. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  Google Scholar 

  2. Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978. https://doi.org/10.1016/j.jclepro.2020.120978

    Article  Google Scholar 

  3. Jagadeesh P, Thyavihalli Girijappa YG, Puttegowda M, Rangappa SM, Siengchin S (2020) Effect of natural filler materials on fiber reinforced hybrid polymer composites: an overview. J Nat Fibers 256:1–16. https://doi.org/10.1080/15440478.2020.1854145

    Article  Google Scholar 

  4. Rout AK, Kar J, Jesthi DK, Sutar AK (2016) Effect of surface treatment on the physical, chemical, and mechanical properties of palm tree leaf stalk fibers. BioResources 11(2):4432–4445. https://doi.org/10.15376/biores.11.2.4432-4445

    Article  Google Scholar 

  5. Lotfi A, Li H, Dao DV, Prusty G (2019) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mater 34(2):238–284. https://doi.org/10.1177/0892705719844546

    Article  Google Scholar 

  6. Girijappa YGT, Rangappa SM, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:1–14. https://doi.org/10.3389/fmats.2019.00226

    Article  Google Scholar 

  7. Singh JK, Rout AK, Kumari K (2021) A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites. Carbohydr Polym 262:117929. https://doi.org/10.1016/j.carbpol.2021.117929

    Article  Google Scholar 

  8. Bessa W, Trache D, Derradji M, Tarchoun AF (2021) Morphological, thermal and mechanical properties of benzoxazine resin reinforced with alkali treated alfa fibers. Ind Crops Prod 165:113423. https://doi.org/10.1016/j.indcrop.2021.113423

    Article  Google Scholar 

  9. Vigneshwaran S, Sundarakannan R, John KM, Joel Johnson RD, Prasath KA, Ajith S et al (2020) Recent advancement in the natural fiber polymer composites: a comprehensive review. J Clean Prod 277:124109. https://doi.org/10.1016/j.jclepro.2020.124109

    Article  Google Scholar 

  10. Boudjellal A, Trache D, Khimeche K, Hafsaoui SL, Razali MS (2021) Preparation and characterization of graphene oxide-based natural hybrids containing alfa fibers or microcrystalline cellulose. J Nat Fibers 1–12. https://doi.org/10.1080/15440478.2021.1875373

  11. Ramesh M, Deepa C, Kumar LR, Sanjay MR, Siengchin S (2020) Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. J Ind Text 51:5518–5542. https://doi.org/10.1177/1528083720924730

    Article  Google Scholar 

  12. Veeman D, Palaniyappan S (2022) Process optimisation on the compressive strength property for the 3D printing of PLA/almond shell composite. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057221092327

  13. Bessa W, Trache D, Derradji M, Bentoumia B, Tarchoun AF, Hemmouche L (2021) Effect of silane modified microcrystalline cellulose on the curing kinetics, thermo-mechanical properties and thermal degradation of benzoxazine resin. Int J Biol Macromol 180:194–202. https://doi.org/10.1016/j.ijbiomac.2021.03.080

    Article  Google Scholar 

  14. Bessa W, Tarchoun AF, Trache D, Derradji M (2021) Preparation of amino-functionalized microcrystalline cellulose from Arundo Donax L. and its effect on the curing behavior of bisphenol A–based benzoxazine. Thermochim Acta 698:1–9. https://doi.org/10.1016/j.tca.2021.178882

    Article  Google Scholar 

  15. Vishal K, Rajkumar K, Nitin MS, Sabarinathan P (2022) Kigelia africana fruit biofibre polysaccharide extraction and biofibre development by silane chemical treatment. Int J Biol Macromol 209:1248–1259. https://doi.org/10.1016/j.ijbiomac.2022.04.137

    Article  Google Scholar 

  16. Balaji AN, Nagarajan KJ (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208. https://doi.org/10.1016/j.carbpol.2017.06.065

    Article  Google Scholar 

  17. Bessa W, Trache D, Derradji M, Ambar H, Tarchoun AF, Benziane M et al (2020) Characterization of raw and treated Arundo donax L. cellulosic fibers and their effect on the curing kinetics of bisphenol A-based benzoxazine. Int J Biol Macromol 164:2931–2943. https://doi.org/10.1016/j.ijbiomac.2020.08.179

    Article  Google Scholar 

  18. Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos Part B Eng 44(1):433–438. https://doi.org/10.1016/j.compositesb.2012.04.075

    Article  Google Scholar 

  19. Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29(1):130–142. https://doi.org/10.1007/s10924-020-01858-w

    Article  Google Scholar 

  20. Ganapathy T, Sathiskumar R, Senthamaraikannan P, Saravanakumar SS, Khan A (2019) Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Int J Biol Macromol 138:573–581. https://doi.org/10.1016/j.ijbiomac.2019.07.136

    Article  Google Scholar 

  21. Sabarinathan P, Annamalai VE, Rajkumar K, Vishal K, Dhinakaran V (2022) Synthesis and characterization of randomly oriented silane-grafted novel bio-cellulosic fish tail palm fiber–reinforced vinyl ester composite. Biomass Convers Biorefinery 12:138. https://doi.org/10.1007/s13399-022-02459-4

    Article  Google Scholar 

  22. Palaniyappan S, Veiravan A, Kaliyamoorthy R, Kumar V, Veeman D (2022) A spatial distribution effect of almond shell bio filler on physical, mechanical, thermal deflection and water absorption properties of vinyl ester polymer composite. Polym Compos 43(5):3204–3218. https://doi.org/10.1002/pc.26611

    Article  Google Scholar 

  23. Beroual M, Mehelli O, Boumaza L, Trache D, Tarchoun AF, Derradji M et al (2021) Synthesis and characterization of microcrystalline cellulose from giant reed using different delignification processes. In: Materials Research and Applications. Springer, UK, pp 173–187. https://doi.org/10.1007/978-981-15-9223-2

  24. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Jawaid M, Khan A et al (2018) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int J Biol Macromol 125:99–108. https://doi.org/10.1016/j.ijbiomac.2018.12.056

    Article  Google Scholar 

  25. Maja Rujnić Havstad (2020) 5-Biodegradable plastics. In: Plastic Waste and Recycling. Elsevier, pp 97–129. https://doi.org/10.1016/B978-0-12-817880-5.00005-0

  26. Negawo TA, Yusuf P, Buyuknalcaci FN, Ali K, Saba N, Jawaid M (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated rnsete stem fibers reinforced unsaturated polyester composites. Compos Struct 207:589–597. https://doi.org/10.1016/j.compstruct.2018.09.043

    Article  Google Scholar 

  27. Ilangovan M, Guna V, Prajwal B, Jiang Q, Reddy N (2020) Extraction and characterisation of natural cellulose fibers from kigelia africana. Carbohydr Polym 236:115996. https://doi.org/10.1016/j.scs.2020.102018

    Article  Google Scholar 

  28. Abdullah HH, Zakaria S, Anuar NIS, Mohd Salleh K, Jaafar SNS (2020) Effect of harvesting time and water retting fiber processing methods on the physico-mechanical properties of kenaf fiber. BioResources 15(3):7207–7222. https://doi.org/10.15376/biores.15.3.7207-7222

    Article  Google Scholar 

  29. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    Article  Google Scholar 

  30. Narayanasamy P, Balasundar P, Senthil S, Sanjay MR, Siengchin S, Khan A et al (2020) Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int J Biol Macromol 150:793–801. https://doi.org/10.1016/j.ijbiomac.2020.02.134

    Article  Google Scholar 

  31. Boudjellal A, Trache D, Bekhouche S, Khimeche K, Razali MS, Guettiche D (2021) Preparation and characterization of Alfa fibers/graphene nanoplatelets hybrid for advanced applications. Mater Lett 289:129379. https://doi.org/10.1016/j.matlet.2021.129379

    Article  Google Scholar 

  32. Boopathi L, Sampath PS, Mylsamy K (2012) Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos Part B Eng 43(8):3044–3052. https://doi.org/10.1016/j.compositesb.2012.05.002

    Article  Google Scholar 

  33. Yadav M, Rengasamy RS, Gupta D (2019) Characterization of pearl millet (Pennisetum glaucum) waste. Carbohydr Polym 212:160–168. https://doi.org/10.1016/j.carbpol.2019.02.034

    Article  Google Scholar 

  34. Narendar R, Dasan KP, Dasan P (2014) Chemical treatments of coir pith: morphology, chemical composition, thermal and water retention behavior. Compos Part B Eng 56:770–779. https://doi.org/10.1016/j.compositesb.2013.09.028

    Article  Google Scholar 

  35. Jabli M, Tka N, Ramzi K, Saleh TA (2018) Physicochemical characteristics and dyeing properties of lignin-cellulosic fibers derived from Nerium oleander. J Mol Liq 249:1138–1144. https://doi.org/10.1016/j.molliq.2017.11.126

    Article  Google Scholar 

  36. Moshi AAM, Ravindran D, Bharathi SRS, S., Indran, Saravanakumar SS, et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.matdes.2020.108947

    Article  Google Scholar 

  37. Belouadah Z, Toubal LM, Belhaneche-Bensemra N, Ati A (2021) Characterization of ligno-cellulosic fiber extracted from Atriplex halimus L. plant. Int J Biol Macromol 168:806–815. https://doi.org/10.1016/j.ijbiomac.2020.11.142

    Article  Google Scholar 

  38. Sinha E, Rout SK (2009) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull Mater Sci 32(1):65–76. https://doi.org/10.1007/s12034-009-0010-3

    Article  Google Scholar 

  39. Athinarayanan J, Alshatwi AA, Subbarayan Periasamy V (2020) Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydr Polym 235:115961. https://doi.org/10.1016/j.carbpol.2020.115961

    Article  Google Scholar 

  40. Kathirselvam M, Kumaravel A, Arthanarieswaran VP, Saravanakumar SS (2019) Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr Polym 217:178–189. https://doi.org/10.1016/j.carbpol.2019.04.063

    Article  Google Scholar 

  41. Senthamaraikannan P, Sanjay MR, Bhat KS, Padmaraj NH, Jawaid M (2019) Characterization of natural cellulosic fiber from bark of Albizia amara. J Nat Fibers 16(8):1124–1131. https://doi.org/10.1080/15440478.2018.1453432

    Article  Google Scholar 

  42. Loganathan TM, Sultan MTH, Ahsan Q, Jawaid M, Naveen J, Md Shah AU et al (2020) Characterization of alkali treated new cellulosic fibre from Cyrtostachys renda. J Mater Res Technol 9(3):3537–3546. https://doi.org/10.1016/j.jmrt.2020.01.091

    Article  Google Scholar 

  43. Sabarinathan P, Rajkumar K, Gnanavelbabu A (2016) Mechanical properties of almond shell-sugarcane leaves hybrid epoxy polymer composite. Appl Mech Mater 852:43–48. https://doi.org/10.4028/www.scientific.net/AMM.852.43

    Article  Google Scholar 

  44. Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5):1449–1480. https://doi.org/10.1007/s10570-012-9741-1

    Article  Google Scholar 

  45. ChakravarthyK S, MadhuS NJS, ShariffMd J (2020) Characterization of novel natural cellulosic fiber extracted from the stem of Cissus vitiginea plant. Int J Biol Macromol 161:1358–1370. https://doi.org/10.1016/j.ijbiomac.2020.07.230

    Article  Google Scholar 

  46. Sabarinathan P, Rajkumar K, Annamalai VE, Vishal K (2020) Characterization on chemical and mechanical properties of silane treated fish tail palm fibres. Int J Biol Macromol 163:2457–2464. https://doi.org/10.1080/1023666X.2016.1202466

    Article  Google Scholar 

  47. Devnani GL, Sinha S (2019) Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos Part B Eng 166:436–445. https://doi.org/10.1016/j.compositesb.2019.02.042

    Article  Google Scholar 

  48. Hamad SF, Stehling N, Holland C, Foreman JP, Rodenburg C (2017) Low-voltage SEM of natural plant fibers: microstructure properties (surface and cross-section) and their link to the tensile properties. Procedia Eng 2017(200):295–302. https://doi.org/10.1016/j.proeng.2017.07.042

    Article  Google Scholar 

  49. Oktaee J, Lautenschläger T, Günther M, Neinhuis C, Wagenführ A, Lindner M et al (2017) Characterization of willow bast fibers Salix spp from short-rotation plantation as potential reinforcement for polymer composites. BioResources 12(2):4270–4282. https://doi.org/10.15376/biores.12.2.4270-4282

    Article  Google Scholar 

  50. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr Polym 181:650–658. https://doi.org/10.1016/j.carbpol.2017.11.099

    Article  Google Scholar 

  51. Bessa W, Trache D, Derradji M, Tarchoun AF (2020) Non-isothermal curing kinetics of alkali-treated alfa fibers/polybenzoxazine composites using differential scanning calorimetry. Chem Select 5(18):5374–5386. https://doi.org/10.1002/slct.202000596

    Article  Google Scholar 

  52. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  53. Petroudy SRD (2017) 3-Physical and mechanical properties of natural fibers. In: Advanced high strength natural fibre composites in construction. Elsevier, pp 59–83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0

  54. Gurukarthik Babu B, Prince Winston D, SenthamaraiKannan P, Saravanakumar SS, Sanjay MR (2018) Study on characterization and physicochemical properties of new natural fiber from Phaseolus vulgaris. J Nat Fibers 16(7):1035–1042. https://doi.org/10.1080/15440478.2018.1448318

    Article  Google Scholar 

  55. Jebadurai SG, Raj RE, Sreenivasan VS, Binoj JS (2019) Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Carbohydr Polym 207:675–683. https://doi.org/10.1016/j.carbpol.2018.12.027

    Article  Google Scholar 

  56. Madhu P, Sanjay MR, Pradeep S, Subrahmanya Bhat K, Yogesha B, Siengchin S (2019) Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. J Mater Res Technol 8(3):2597–2604. https://doi.org/10.1016/j.jmrt.2019.03.006

    Article  Google Scholar 

  57. Manimaran P, Saravanan SP, Sanjay MR, Siengchin S, Jawaid M, Khan A (2019) Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J Mater Res Technol 8(2):1952–1963. https://doi.org/10.1016/j.jmrt.2018.12.015

    Article  Google Scholar 

  58. Saravana Kumaar A, Senthilkumar A, Sornakumar T, Saravanakumar SS, Arthanariesewaran VP (2017) Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark. J Nat Fibers 16(2):175–184. https://doi.org/10.1080/15440478.2017.1410514

    Article  Google Scholar 

  59. Shanmugasundaram N, Rajendran I, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr Polym 195:566–575. https://doi.org/10.1016/j.carbpol.2018.04.127

    Article  Google Scholar 

  60. Balasundar P, Narayanasamy P, Senthamaraikannan P, Senthil S, Prithivirajan R, Ramkumar T (2017) Extraction and characterization of new Natural cellulosic chloris barbata fiber. J Nat Fibers 15(3):436–444. https://doi.org/10.1080/15440478.2017.1349015

    Article  Google Scholar 

  61. Baskaran PG, Kathiresan M, Senthamaraikannan P, Saravanakumar SS (2017) Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. J Nat Fibers 15(1):62–68. https://doi.org/10.1080/15440478.2017.1304314

    Article  Google Scholar 

  62. Prithiviraj M, Muralikannan R, Senthamaraikannan P, Saravanakumar SS (2016) Characterization of new natural cellulosic fiber from the Perotis indica plant. Int J Polym Anal Charact 21(8):669–674. https://doi.org/10.1080/1023666X.2016.1202466

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to the Veer Surendra Sai University of Technology and OP Jindal University for providing the necessary resources and support for this research paper.

Author information

Authors and Affiliations

Authors

Contributions

Jitesh Kumar Singh: investigation, formal analysis, visualization, writing original draft and revision of the manuscript; Arun Kumar Rout: resources, methodology, manuscript editing and review and supervision.

Corresponding author

Correspondence to Arun Kumar Rout.

Ethics declarations

Ethical approval

“Not applicable” in this section.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.K., Rout, A.K. Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L.. Biomass Conv. Bioref. 14, 11633–11646 (2024). https://doi.org/10.1007/s13399-022-03238-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03238-x

Keywords

Navigation