Skip to main content
Log in

Physicochemical, thermal, and morphological properties of microcrystalline cellulose extracted from Calotropis gigantea leaf

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The extraction of microcrystalline cellulose from agro-residues is an exciting alternative to recovering these materials. In this research, microcrystalline cellulose was isolated from the leaf of the Calotropis gigantea plant through acid hydrolysis process. In addition, the results were compared with other microcrystalline celluloses. The acid hydrolysis method is used to extract the cellulose from the Calotropis gigantea leaf. The alkali, acid, and bleaching processes removed the lignin, hemicellulose, and other residues in this extraction method. As confirmed in the scanning electronic spectroscopy analysis and particle size analysis, the ball milling machine converts the macro-sized particles into micro-sized cellulose. The isolated Calotropis gigantea micro crystalline cellulose had the cellulose content of 81.33%, which was confirmed in the chemical analysis. This higher cellulose content and lower density (0.55 g/cm3) of the plant leaf are the best advantages for the extraction of microcrystalline cellulose. The Fourier transform infrared testing shows that the chemical processes removed almost all signs of lignin and hemicellulose. The X-ray diffraction analysis confirmed that the produced micro crystalline cellulose is a cellulose I polymorph with a crystallinity index of 48.9% and a crystallinity size of 8.6 nm. The kinetic activation energy of the extracted Calotropis gigantea microcrystalline cellulose is 53.44 KJ mol−1 by using the Coats–Redfern method. The AFM analysis proved the possibility of using microcrystalline cellulose as a filler in polymer composites and films. The extrusion of polymer composites containing these microparticles has a lot of promise. The outcome of this research will also provide a valuable product from agricultural or road side vegetative in the form of microcrystalline cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

There is no dataset provided with this submission.

References

  1. Senthil Muthu Kumar T, Rajini N, Obi Reddy K et al (2018) All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int J Biol Macromol 112:1310–1315. https://doi.org/10.1016/j.ijbiomac.2018.01.167

    Article  Google Scholar 

  2. Miyashita K, Mikami N, Hosokawa M (2013) Chemical and nutritional characteristics of brown seaweed lipids: a review. J Funct Foods 5:1507–1517. https://doi.org/10.1016/j.jff.2013.09.019

    Article  Google Scholar 

  3. Costa C, Alves A, Pinto PR et al (2012) Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr Polym 88:537–546. https://doi.org/10.1016/j.carbpol.2011.12.041

    Article  Google Scholar 

  4. Phanthong P, Reubroycharoen P, Hao X et al (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  5. Okoshi M, Thumsorn S, Hamada H (2016) Flame retardancy of bio-base plastics. Energy Proc 89:38–44. https://doi.org/10.1016/j.egypro.2016.05.006

    Article  Google Scholar 

  6. Matusiak M, Slezak R, Ledakowicz S (2020) Thermogravimetric kinetics of selected energy crops pyrolysis. Energies (Basel) 13. https://doi.org/10.3390/en13153977

  7. El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10. https://doi.org/10.1016/j.carbpol.2006.04.009

    Article  Google Scholar 

  8. Varshney S, Mishra N, Gupta MK (2021) Progress in nanocellulose and its polymer based composites: a review on processing, characterization, and applications. Polym Compos 42:3660–3686. https://doi.org/10.1002/pc.26090

    Article  Google Scholar 

  9. Iyyadurai J, Arockiasamy FS et al (2023) Experimental investigation on mechanical, thermal, viscoelastic, water absorption, and biodegradability behavior of Sansevieria ehrenbergii fiber reinforced novel polymeric composite with the addition of coconut shell ash powder. J Inorg Organometal Polym Mater 2023(1):1–14. https://doi.org/10.1007/S10904-023-02537-8

    Article  Google Scholar 

  10. Yaich H, Garna H, Besbes S et al (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901. https://doi.org/10.1016/j.foodchem.2011.03.114

    Article  Google Scholar 

  11. Trache D (2017) Microcrystalline cellulose and related polymer composites: synthesis, characterization and properties. Handbook Comp Renew Mater 1–8:61–91. https://doi.org/10.1002/9781119441632.ch3

    Article  Google Scholar 

  12. Pal G, Sinha NK (1980) Isolation, crystallization, and properties of calotropins DI and DII from Calotropis gigantea. Arch Biochem Biophys 202:321–329. https://doi.org/10.1016/0003-9861(80)90434-8

    Article  Google Scholar 

  13. Cao E, Xiao W, Duan W et al (2018) Metallic nanoparticles roughened Calotropis gigantea fiber enables efficient absorption of oils and organic solvents. Ind Crops Prod 115:272–279. https://doi.org/10.1016/j.indcrop.2018.02.052

    Article  Google Scholar 

  14. Indran S, Divya D, Raja S, et al (2022) Physico-chemical, mechanical and morphological characterization of Furcraea selloa K. Koch plant leaf fibers-an exploratory investigation. 101080/1544047820222146829 1–17.

  15. Rantheesh J, Indran S, Raja S et al (2022) Isolation and characterization of novel micro cellulose from Azadirachta indica A . Juss agro - industrial residual waste oil cake for futuristic applications. Biomass Convers Biorefin 1:19–21. https://doi.org/10.1007/s13399-022-03467-0

    Article  Google Scholar 

  16. Mandal BK, Mandal R, Limbu D et al (2022) Green synthesis of AgCl nanoparticles using Calotropis gigantea: characterization and their enhanced antibacterial activities. Chem Phys Lett 801:139699. https://doi.org/10.1016/j.cplett.2022.139699

    Article  Google Scholar 

  17. Kadiyala M, Ponnusankar S, Elango K (2013) Calotropis gigantiea (L.) R. Br (Apocynaceae): a phytochemical and pharmacological review. J Ethnopharmacol 150:32–50. https://doi.org/10.1016/j.jep.2013.08.045

    Article  Google Scholar 

  18. Bhattacharya D, Sengupta A, Sinha NK (1985) Phenolic hydroxyl ionization in calotropins from Calotropis gigantea latex. Phytochemistry 24:2537–2539. https://doi.org/10.1016/S0031-9422(00)80663-9

    Article  Google Scholar 

  19. Sumesh KRR, Kavimani V, Rajeshkumar G et al (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag 23:1277–1288. https://doi.org/10.1007/s10163-021-01196-6

    Article  Google Scholar 

  20. Indran S, Edwin Raj R, Sreenivasan VSS (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr Polym 110:423–429. https://doi.org/10.1016/j.carbpol.2014.04.051

    Article  Google Scholar 

  21. Arul Marcel Moshi A, Ravindran D, Sundara Bharathi SRR et al (2020) Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 156:997–1006. https://doi.org/10.1016/j.ijbiomac.2020.04.117

    Article  Google Scholar 

  22. Sundaram RS, Rajamoni R, Suyambulingam I, Isaac R (2021) Comprehensive characterization of industrially discarded Cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: effect of fiber length and weight fraction. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1944435

  23. Indran S, Raj RE, Daniel BSS, Saravanakumar SS (2016) Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. J Reinf Plast Comp 35:212–227. https://doi.org/10.1177/0731684415611756

    Article  Google Scholar 

  24. Jagadeesan R, Suyambulingam I, Somasundaram R et al (2023) Isolation and characterization of novel microcellulose from Sesamum indicum agro-industrial residual waste oil cake: conversion of biowaste to wealth approach. Biomass Convers Bioref 1:1–15. https://doi.org/10.1007/S13399-022-03690-9

    Article  Google Scholar 

  25. Pillai RSS, Rajamoni R, Suyambulingam I, Divakaran D (2021) Effect of fiber loading rate on various properties of the fiber reinforced polymer composites. Eng Mater 27–45. https://doi.org/10.1007/978-981-16-0642-7_2/COVER

  26. Indran S, Raja S, Divya D, Rajeshkumar G (2022) Novel plant, their composites and applications. Plant Fibers Comp Appl 437–456. https://doi.org/10.1016/B978-0-12-824528-6.00012-6

  27. Moshi AAM, Ravindran D, Bharathi SRS et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/J.IJBIOMAC.2019.09.094

    Article  Google Scholar 

  28. Raja S, Rajesh R, Indran S et al (2022) Characterization of industrial discarded novel Cymbopogon flexuosus stem fiber: a potential replacement for synthetic fiber. J Indust Textiles 51:1207S–1234S. https://doi.org/10.1177/15280837211007507

    Article  Google Scholar 

  29. Muthu Chozha Rajan B, Indran S, Divya D et al (2022) Mechanical and thermal properties of Chloris barbata flower fiber /epoxy composites: effect of alkali treatment and fiber weight fraction. J Nat Fibers 19:3453–3466. https://doi.org/10.1080/15440478.2020.1848703

    Article  Google Scholar 

  30. Thakur S, Das P, Itoh T et al (1984) Latex extractables of Calotropis gigantea. Phytochemistry 23:2085–2087. https://doi.org/10.1016/S0031-9422(00)84985-7

    Article  Google Scholar 

  31. Gandhi VCSCS, Jenish I, Indran S, Rajan DYY (2022) Mechanical and thermal analysis of cissus quadrangularis stem fiber/epoxy composite with micro-red mud filler composite for structural application. Trans Ind Inst Metals 75:737–747. https://doi.org/10.1007/s12666-021-02478-1

    Article  Google Scholar 

  32. Somasundaram R, Rajamoni R, Suyambulingam I et al (2022) Utilization of discarded Cymbopogon flexuosus root waste as a novel lignocellulosic fiber for lightweight polymer composite application. Polym Compos 43:1–16. https://doi.org/10.1002/pc.26580

    Article  Google Scholar 

  33. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  Google Scholar 

  34. Binoj JSS, Raj REE, Indran S (2018) Characterization of industrial discarded fruit wastes (Tamarindus Indica L.) as potential alternate for man-made vitreous fiber in polymer composites. Proc Safety Environ Protect 116:527–534. https://doi.org/10.1016/j.psep.2018.02.019

    Article  Google Scholar 

  35. Sari NH, Ilyas RA et al (2021) Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light. Funct Compos Struct 3:034001. https://doi.org/10.1088/2631-6331/ac0ed3

    Article  Google Scholar 

  36. Sunesh NPNP, Indran S, Divya D, Suchart S (2022) Isolation and characterization of novel agrowaste-based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement. Polym Compos 43:6476–6488. https://doi.org/10.1002/pc.26960

    Article  Google Scholar 

  37. Venkatesan M, Arumugam V, Pugalendi R et al (2019) Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds. Proc Biochem 84:196–204. https://doi.org/10.1016/j.procbio.2019.05.029

    Article  Google Scholar 

  38. Arunramnath R, Elnaggar AYAY, Fallatah AM et al (2022) Characterization of novel natural cellulosic fibers from Abutilon indicum for potential reinforcement in polymer composites. Polym Compos 44:340. https://doi.org/10.1002/pc.27100

    Article  Google Scholar 

  39. Jenish I, Gandhi VCSCS, Raj REE et al (2020) A new study on tribological performance of Cissus quadrangularis stem fiber/epoxy with red mud filler composite. J Nat Fibers 19:1502. https://doi.org/10.1080/15440478.2020.1848709

    Article  Google Scholar 

  40. Divya D, Indran S, Sanjay MR, Siengchin S (2022) Suitability examination of novel cellulosic plant fiber from Furcraea selloa K . Koch peduncle for a potential polymeric composite reinforcement. Polym Compos:1–21. https://doi.org/10.1002/pc.26683

  41. Rajeshkumar G, Hariharan V, Indran S et al (2020) Influence of sodium hydroxide (naoh) treatment on mechanical properties and morphological behaviour of Phoenix sp Fiber/Epoxy Composites. J Polym Environ 29:765–774. https://doi.org/10.1007/s10924-020-01921-6

    Article  Google Scholar 

  42. Chao KP, Su YC, Chen CS (2000) Feasibility of utilizing Rhizoclonium in pulping and papermaking. J Appl Phycol 12:53–62. https://doi.org/10.1023/A:1008166815023

    Article  Google Scholar 

  43. Babu BGG, Princewinston D, Saravanakumar SSS et al (2022) Investigation on the physicochemical and mechanical properties of novel alkali-treated Phaseolus vulgaris fibers. J Nat Fibers 19:770–781. https://doi.org/10.1080/15440478.2020.1761930

    Article  Google Scholar 

  44. Jagadeesan R, Suyambulingam I, Divakaran D, Siengchin S (2022) Novel sesame oil cake biomass waste derived cellulose micro - fillers reinforced with basalt / banana fibre - based hybrid polymeric composite for lightweight applications. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-03570-2

  45. Ramasamy S, Karuppuchamy A, Jayaraj JJ et al (2022) Comprehensive characterization of novel Robusta (AAA) banana bracts fibers reinforced polylactic acid based biocomposites for lightweight applications. Polym Compos 1–12. https://doi.org/10.1002/pc.27025

  46. Durai PN, Viswalingam K, Divya D, Senthilkumar B (2022) Mechanical, thermal, and surface morphological properties of Musa acuminate peduncle fiber-reinforced polymeric composite: effect of alkalization and fiber loading. Polym Compos 43:5107–5118. https://doi.org/10.1002/pc.26800

    Article  Google Scholar 

  47. Mohan SJ, Devasahayam PSS, Suyambulingam I, Siengchin S (2022) Suitability characterization of novel cellulosic plant fiber from Ficus benjamina L. aerial root for a potential polymeric composite reinforcement. Polym Compos 43(12):9012

    Article  Google Scholar 

  48. Soma Sundaram Pillai R, Rajamoni R, Suyambulingam I et al (2021) Synthesis and characterization of cost-effective industrial discarded natural ceramic particulates from Cymbopogon flexuosus plant shoot for potential polymer/metal matrix reinforcement. Polym Bull 79(10):8765. https://doi.org/10.1007/s00289-021-03913-5

    Article  Google Scholar 

  49. Iyyadurai J, Gandhi VCS, Suyambulingam I, Rajeshkumar G (2021) Sustainable development of Cissus quadrangularis stem fiber/epoxy composite on abrasive wear rate. J Nat Fibers 19(14):9283. https://doi.org/10.1080/15440478.2021.1982819

    Article  Google Scholar 

  50. Balan L, Chandrasekaran S, Gajendiran M, Nanjian R (2021) Synthesis of silver nanoparticles from Pedalium murex L. and its antiproliferative activity against breast cancer (MCF-7) cells. J Mol Struct 1242:130695. https://doi.org/10.1016/j.molstruc.2021.130695

    Article  Google Scholar 

  51. Vinod A, Yashas Gowda TGG, Vijay R et al (2021) Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: a sustainable and green material for cleaner production. J Clean Prod 294:126337. https://doi.org/10.1016/j.jclepro.2021.126337

    Article  Google Scholar 

  52. Singh P, Singh RK, Gokul PV et al (2020) Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: Recov , Utilization Environ Effects 7036. https://doi.org/10.1080/15567036.2020.1736215

  53. Divakaran D, Sriariyanun M, Basha SA et al (2023) Physico-chemical, thermal, and morphological characterization of biomass-based novel microcrystalline cellulose from Nelumbo nucifera leaf: biomass to biomaterial approach. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04349-9

  54. Renugadevi K, Devan PK, Thomas T (2019) Fabrication of Calotropis gigantea fibre reinforced compression spring for light weight applications. Compos B Eng 172:281–289. https://doi.org/10.1016/j.compositesb.2019.05.037

    Article  Google Scholar 

  55. Reza MT, Mumme J, Ebert A (2015) Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate. Biomass Convers Biorefin 5:425–435. https://doi.org/10.1007/s13399-015-0163-9

    Article  Google Scholar 

  56. Sun C (2005) True density of microcrystalline cellulose. J Pharm Sci 94:2132–2134. https://doi.org/10.1002/jps.20459

    Article  Google Scholar 

  57. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88(2):772–779. https://doi.org/10.1016/j.carbpol.2012.01.062

    Article  Google Scholar 

  58. Murti PBR, Seshadri TR (1943) Chemical composition of Calotropis gigantea - Part I. Wax and resin components of the latex. Proc Ind Acad Sci - Section A 18:145–159. https://doi.org/10.1007/BF03051268

    Article  Google Scholar 

  59. Sen S, Sahu NP, Mahato SB (1992) Flavonol glycosides from Calotropis gigantea. Phytochemistry 31:2919–2921. https://doi.org/10.1016/0031-9422(92)83668-O

    Article  Google Scholar 

  60. Lu P, Lo HY (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. https://doi.org/10.1016/j.carbpol.2011.08.022

    Article  Google Scholar 

  61. Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819. https://doi.org/10.1016/j.biombioe.2007.06.001

    Article  Google Scholar 

  62. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  Google Scholar 

  63. Gabriel T, Belete A, Syrowatka F et al (2020) Extraction and characterization of celluloses from various plant byproducts. Int J Biol Macromol 158:1248–1258. https://doi.org/10.1016/j.ijbiomac.2020.04.264

    Article  Google Scholar 

  64. Klaai L, Hammiche D, Boukerrou A, Pandit V (2021) Thermal and structural analyses of extracted cellulose from olive husk. Mater Today Proc 52:104–107. https://doi.org/10.1016/j.matpr.2021.10.498

    Article  Google Scholar 

  65. Sumesh KKR, Kavimani V, Rajeshkumar G et al (2020) Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. J Indust Textiles 51:152808372097134. https://doi.org/10.1177/1528083720971344

    Article  Google Scholar 

  66. Kumneadklang S, Larpkiattaworn S, Niyasom C, Sompong O (2015) Bioethanol Production from oil palm frond by simultaneous saccharification and fermentation. Energy Procedia 79:784–790. https://doi.org/10.1016/j.egypro.2015.11.567

    Article  Google Scholar 

  67. Wu J, Zhu W, Shi X et al (2020) Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Carbohydr Polym 236:115999. https://doi.org/10.1016/j.carbpol.2020.115999

    Article  Google Scholar 

  68. Bichet-Hébé I, Pourcher AM, Sutra L et al (1999) Detection of a whitening fluorescent agent as an indicator of white paper biodegradation: a new approach to study the kinetics of cellulose hydrolysis by mixed cultures. J Microbiol Methods 37:101–109. https://doi.org/10.1016/S0167-7012(99)00043-3

    Article  Google Scholar 

  69. Byadgi SA, Kalburgi PB (2016) Production of bioethanol from waste newspaper. Procedia Environ Sci 35:555–562. https://doi.org/10.1016/j.proenv.2016.07.040

    Article  Google Scholar 

  70. Divakaran D, Sriariyanun M, Jagadeesan R et al (2023) Isolation and characterization of an agro-industrial waste-based novel cellulosic micro fillers from mustard (Brassica juncea) seed oil cake: a waste to wealth approach. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04346-y

  71. Jia F, Liu H, Zhang G (2016) Preparation of carboxymethyl cellulose from corncob. Proc Environ Sci 31:98–102. https://doi.org/10.1016/j.proenv.2016.02.013

    Article  Google Scholar 

  72. Bettaieb F, Khiari R, Dufresne A et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104. https://doi.org/10.1016/j.carbpol.2015.01.026

    Article  Google Scholar 

  73. Divya D, Jenish I, Raja S (2022) Comprehensive characterization of Furcraea selloa K. Koch peduncle fiber-reinforced polyester composites-effect of fiber length and weight ratio. Adv Mater Sci Eng 2022. https://doi.org/10.1155/2022/8099500

  74. Zouari-Ellouzi S, Chaari F, Bouaziz A et al (2019) Suitability of starch extracted from fresh pasta by-product in biodegradable film production. Environ Prog Sustain Energy 38:527–533. https://doi.org/10.1002/ep.13012

    Article  Google Scholar 

  75. Beroual M, Trache D, Mehelli O et al (2021) Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valoriz 12:2779–2793. https://doi.org/10.1007/s12649-020-01198-9

    Article  Google Scholar 

  76. Prado KS, Gonzales D, Spinacé MAS (2019) Recycling of viscose yarn waste through one-step extraction of nanocellulose. Int J Biol Macromol 136:729–737. https://doi.org/10.1016/j.ijbiomac.2019.06.124

    Article  Google Scholar 

  77. Buendia-Kandia F, Brosse N, Petitjean D et al (2020) Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers Biorefin 10:1–13. https://doi.org/10.1007/s13399-019-00395-4

    Article  Google Scholar 

  78. Lai SM, Huang CK, Shen HF (2005) Preparation and properties of biodegradable poly(butylene succinate)/starch blends. J Appl Polym Sci 97:257–264. https://doi.org/10.1002/app.21679

    Article  Google Scholar 

  79. Pereira PHF, Ornaghi HL, Arantes V, Cioffi MOH (2021) Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr Res 499. https://doi.org/10.1016/j.carres.2020.108227

  80. Hasanin MS, Kassem N, Hassan ML (2021) Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01423-y

  81. Sainorudin MH, Mohammad M, Kadir NHA et al (2018) Characterization of several microcrystalline cellulose (Mcc)-based agricultural wastes via x-ray diffraction method. Solid State Phenomena 280:340–345. https://doi.org/10.4028/www.scientific.net/SSP.280.340

    Article  Google Scholar 

  82. Beroual M, Boumaza L, Mehelli O et al (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29:130–142. https://doi.org/10.1007/s10924-020-01858-w

    Article  Google Scholar 

  83. Reddy KO, Maheswari CU, Dhlamini MS et al (2018) Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

    Article  Google Scholar 

  84. Uma Maheswari C, Obi Reddy K, Muzenda E et al (2012) Extraction and characterization of cellulose microfibrils from agricultural residue - Cocos nucifera L. Biomass Bioenergy 46:555–563. https://doi.org/10.1016/j.biombioe.2012.06.039

    Article  Google Scholar 

  85. Nabili A, Fattoum A, Passas R et al (2014) Extraction and characterization of cellulose from date palm seeds ( Phoenix dactylifera L .) Laboratory of Pulp, Paper and Graphic Arts Sciences, UMR CNRS 5518. Cellul Chem Technol 50:9–10

    Google Scholar 

  86. Ibrahim MM, El-Zawawy WK, Jüttke Y et al (2013) Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose 20:2403–2416. https://doi.org/10.1007/s10570-013-9992-5

    Article  Google Scholar 

  87. Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459. https://doi.org/10.1007/s10570-010-9481-z

    Article  Google Scholar 

  88. Hebeish AA, El-Rafie MH, Abdel-Mohdy FA et al (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82:933–941. https://doi.org/10.1016/j.carbpol.2010.06.020

    Article  Google Scholar 

  89. Bikova T, Treimanis A (2004) UV-absorbance of oxidized xylan and monocarboxyl cellulose in alkaline solutions. Carbohydr Polym 55:315–322. https://doi.org/10.1016/j.carbpol.2003.10.005

    Article  Google Scholar 

  90. Ibrahim HM, Zaghloul S, Hashem M, El-Shafei A (2021) A green approach to improve the antibacterial properties of cellulose based fabrics using Moringa oleifera extract in presence of silver nanoparticles. Cellulose 28:549–564. https://doi.org/10.1007/s10570-020-03518-7

    Article  Google Scholar 

  91. Kassab Z, Syafri E, Tamraoui Y et al (2020) Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. Int J Biol Macromol 154:1419–1425. https://doi.org/10.1016/j.ijbiomac.2019.11.023

    Article  Google Scholar 

  92. Luzi F, Puglia D, Sarasini F et al (2019) Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydr Polym 209:328–337. https://doi.org/10.1016/j.carbpol.2019.01.048

    Article  Google Scholar 

  93. Athirah Abdullah N, Hanif Sainorudin M, Asim N et al (2020) Extraction of microcrystalline cellulose from two different agriculture waste via chemical treatment. IOP Conf Ser Mater Sci Eng 739. https://doi.org/10.1088/1757-899X/739/1/012017

  94. Rashid S, Dutta H (2020) Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind Crops Prod 154. https://doi.org/10.1016/j.indcrop.2020.112627

  95. Igathinathane C, Pordesimo LO, Columbus EP et al (2009) Sieveless particle size distribution analysis of particulate materials through computer vision. Comput Electron Agric 66:147–158. https://doi.org/10.1016/j.compag.2009.01.005

    Article  Google Scholar 

  96. Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324. https://doi.org/10.1016/j.tetlet.2008.10.052

    Article  Google Scholar 

  97. Domene-López D, Delgado-Marín JJ, Martin-Gullon I et al (2019) Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. Int J Biol Macromol 135:845–854. https://doi.org/10.1016/j.ijbiomac.2019.06.004

    Article  Google Scholar 

  98. Sakuri S, Surojo E, Ariawan D, Prabowo AR (2020) Investigation of Agave cantala-based composite fibers as prosthetic socket materials accounting for a variety of alkali and microcrystalline cellulose treatments. Theor Appl Mech Lett 10:405–411. https://doi.org/10.1016/j.taml.2020.01.052

    Article  Google Scholar 

  99. Sousa AF, Silvestre AJD (2022) Plastics from renewable sources as green and sustainable alternatives. Curr Opin Green Sustain Chem 33:100557. https://doi.org/10.1016/j.cogsc.2021.100557

    Article  Google Scholar 

  100. Porzio L, Arena C, Lorenti M et al (2020) Long-term response of Dictyota dichotoma var. intricata (C. Agardh) Greville (Phaeophyceae) to ocean acidification: Insights from high pCO2 vents. Sci Total Environ 731:138896. https://doi.org/10.1016/j.scitotenv.2020.138896

    Article  Google Scholar 

  101. Meng F, Zhou Y, Liu JY et al (2018) Thermal decomposition behaviors and kinetics of carrageenan-poly vinyl alcohol bio-composite film. Carbohydr Polym 201:96–104. https://doi.org/10.1016/j.carbpol.2018.07.095

    Article  Google Scholar 

  102. Hänninen T (2011) Studies on the ultrastructure of natural fibres and its effects on the fibre utilization. http://urn.fi/URN:ISBN:978-952-60-4359-3

  103. Bhavanam A, Sastry RC (2015) Kinetic study of solid waste pyrolysis using distributed activation energy model. Bioresour Technol 178:126–131

    Article  Google Scholar 

  104. Paswan SK, Kumari S, Kar M et al (2021) Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J Phys Chem Solids 151:109928. https://doi.org/10.1016/j.jpcs.2020.109928

    Article  Google Scholar 

  105. Mulinari DR, Voorwald HJC, Cioffi MOH et al (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219. https://doi.org/10.1016/j.compscitech.2008.10.006

    Article  Google Scholar 

  106. Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

    Article  Google Scholar 

  107. Manikandan KM, Yelilarasi A, Senthamaraikannan P et al (2019) A green-nanocomposite film based on poly(vinyl alcohol)/ Eleusine coracana: structural, thermal, and morphological properties. Int J Polym Anal Characterization 24:257–265. https://doi.org/10.1080/1023666X.2019.1567087

    Article  Google Scholar 

  108. Vinod A, Sanjay MR, Siengchin S, Fischer S (2021) Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: Influence of surface modification techniques. Constr Build Mater 303. https://doi.org/10.1016/j.conbuildmat.2021.124509

Download references

Acknowledgements

The first author acknowledges the Arunai Engineering College, Tiruvannamalai, TamilNadu, and RadoChemMAX, Nagercoil, for providing research support to carry out this review work. The authors also acknowledge the Natural Composites Research Group Lab, Department of Materials and Production Engineering, the Sirindhorn International Thai-German Graduate School of Engineering, and King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand, for their support to complete this research work.

Author information

Authors and Affiliations

Authors

Contributions

Ravichandaran Rathinavelu: conceptualization, investigation, formal analysis, visualisation, writing original draft; Baskara Sethupathi Paramathma: manuscript editing and review; Divya D: methodology, validation and interpretation of results; Suchart Siengchin: resources and supervision.

Corresponding author

Correspondence to Ravichandaran Rathinavelu.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinavelu, R., Paramathma, B.S., Divkaran, D. et al. Physicochemical, thermal, and morphological properties of microcrystalline cellulose extracted from Calotropis gigantea leaf. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04370-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04370-y

Keywords

Navigation