Skip to main content
Log in

Facile exfoliation and physicochemical characterization of biomass-based cellulose derived from Pandanus tectorius leaves for sustainable environment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cellulose present in natural plant sources has better potentials to replace traditional synthetic fibers. However, a lack of knowledge and awareness on cellulose hinders efforts to fully utilize this extremely biodegradable resource. This study aims to extract and characterize the microcrystalline cellulose (MC) obtained from Pandanus tectorius leaves. The MC particles are extracted with the aid of alkaline and chemical treatment. The extracted MC powder is in pure white color and further investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), ultraviolet–visible spectroscopy (UV), thermogravimetric analysis (TGA), and scanning electron microscopy analysis (SEM) to understand its physicochemical properties and surface morphology. The band gap energy of exfoliated MC was 4.21 eV; with crystallinity index and degree of crystallinity of 76.8% and 81.4%, the dislocation density is calculated as 0.002. Thermal stability of MC particle was up to 470 °C; further increment in temperature degrades the MC particles. The obtained results depict that exfoliated MC particles have better band gap, and it can be used for food packing industries, and furthermore, this type of waste plant weeds can be converted in to useful MC particles to be used as a filler material in developing polymer matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deeksha B, Sadanand V, Hariram N, Rajulu AV (2021) Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. Journal of Bioresources and Bioproducts 6:75–81. https://doi.org/10.1016/J.JOBAB.2021.01.003

    Article  Google Scholar 

  2. Mishra SK, Dahiya S, Gangil B et al (2022) Mechanical, morphological, and tribological characterization of novel walnut shell-reinforced polylactic acid-based biocomposites and prediction based on artificial neural network. Biomass Conversion and Biorefinery 1:1–12. https://doi.org/10.1007/S13399-022-03670-Z

    Article  Google Scholar 

  3. Gapsari F, Andoko A, Diharjo K et al (2022) The effectiveness of isolation and characterization nanocelullose from Timoho fiber for sustainable materials. Biomass Conversion and Biorefinery 1:1–11. https://doi.org/10.1007/S13399-022-03672-X

    Article  Google Scholar 

  4. Vijay R, Vinod A, Kathiravan R et al (2020) Evaluation of Azadirachta indica seed/spent Camellia sinensis bio-filler based jute fabrics–epoxy composites: experimental and numerical studies. Journal of Industrial Textiles 49:1252–1277. https://doi.org/10.1177/1528083718811086

    Article  Google Scholar 

  5. Vinod A, Vijay R, Singaravelu DL (2018) Thermomechanical characterization of Calotropis gigantea stem powder-filled jute fiber-reinforced epoxy composites. Journal of Natural Fibers 15:648–657. https://doi.org/10.1080/15440478.2017.1354740

    Article  Google Scholar 

  6. Dinesh S, Kumaran P, Mohanamurugan S et al (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. Journal of Polymer Research 27:1–3. https://doi.org/10.1007/S10965-019-1975-2

    Article  Google Scholar 

  7. Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978. https://doi.org/10.1016/j.jclepro.2020.120978

    Article  Google Scholar 

  8. Vinod A, Rangappa SM, Srisuk R et al (2023) Agro-waste Capsicum annum stem: an alternative raw material for lightweight composites. Ind Crop Prod 193:116141. https://doi.org/10.1016/J.INDCROP.2022.116141

    Article  Google Scholar 

  9. Rantheesh J, Indran S, Raja S et al (2022) Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro - industrial residual waste oil cake for futuristic applications. Biomass Convers Biorefin 1:19–21. https://doi.org/10.1007/s13399-022-03467-0

    Article  Google Scholar 

  10. Dhali K, Daver F, Cass P, Adhikari B (2021) Isolation and characterization of cellulose nanomaterials from jute bast fibers. J Environ Chem Eng 9:106447

    Article  Google Scholar 

  11. Kassab Z, Kassem I, Hannache H et al (2020) Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27:4287–4303

    Article  Google Scholar 

  12. Thulasisingh A, Kannaiyan S, Pichandi K (2021) Cellulose nanocrystals from orange and lychee biorefinery wastes and its implementation as tetracycline drug transporter. Biomass Convers Biorefin:1–14

  13. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262. https://doi.org/10.1007/s10570-013-0007-3

    Article  Google Scholar 

  14. Huang S, Liu X, Chang C, Wang Y (2020) Recent developments and prospective food-related applications of cellulose nanocrystals: a review. Cellulose 27:2991–3011

    Article  Google Scholar 

  15. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828

    Article  Google Scholar 

  16. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  Google Scholar 

  17. Jagadeesan R, Suyambulingam I, Divakaran D, Siengchin S (2022) Novel sesame oil cake biomass waste derived cellulose micro-fillers reinforced with basalt/banana fibre-based hybrid polymeric composite for lightweight applications. Biomass Convers Biorefin 1:1–16. https://doi.org/10.1007/S13399-022-03570-2/FIGURES/12

    Article  Google Scholar 

  18. Zergane H, Abdi S, Xu H et al (2020) Ampelodesmos mauritanicus: a new sustainable source for nanocellulose substrates. Ind Crop Prod 144:112044

    Article  Google Scholar 

  19. Yu W, Wang C, Yi Y et al (2021) Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity. Cellulose 28:175–188

    Article  Google Scholar 

  20. Nuruddin M, Hosur M, Uddin MJ et al (2016) A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment. J Appl Polym Sci 133

  21. Syafri E, Sari NH, Mahardika M et al (2022) Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. Int J Biol Macromol 200:25–33

    Article  Google Scholar 

  22. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005

    Article  Google Scholar 

  23. Reshmy R, Philip E, Paul SA et al (2021) A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. Biomass Convers Biorefin 11:861–870. https://doi.org/10.1007/S13399-020-00961-1/FIGURES/8

    Article  Google Scholar 

  24. Chaffa TY, Meshesha BT, Mohammed SA, Jabasingh SA (2022) Production, characterization, and optimization of starch-based biodegradable bioplastic from waste potato (Solanum tuberosum) peel with the reinforcement of false banana (Ensete ventricosum) fiber. Biomass Convers Biorefin 1:1–13. https://doi.org/10.1007/S13399-022-03426-9/FIGURES/7

    Article  Google Scholar 

  25. Thiyagu TT, Sai Prasanna SPK, P G et al (2021) Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films. Biomass Convers Biorefin 1:1–11. https://doi.org/10.1007/S13399-021-01941-9/FIGURES/11

    Article  Google Scholar 

  26. Xu L, Wang A, Li S et al (2022) Biomass residue cellulose-based poly(ionic liquid)s: new materials with selective metal ion adsorption. Biomass Convers Biorefin 12:3933–3942. https://doi.org/10.1007/s13399-020-00889-6

    Article  Google Scholar 

  27. Dube AM (2022) Isolation and characterization of cellulose nanocrystals from Ensete ventricosum pseudo-stem fiber using acid hydrolysis. Biomass Conversion and Biorefinery 2:1–16

    Google Scholar 

  28. Noremylia MB, Hassan MZ, Ismail Z (2022) Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.03.064

  29. Khanpit VV, Tajane SP, Mandavgane SA (2022) Orange waste peel to high value soluble dietary fiber concentrate: comparison of conversion methods and their environmental impact. Biomass Conversion and Biorefinery 1–11. https://doi.org/10.1007/s13399-022-02481-6

  30. Kunam PK, Ramakanth D, Akhila K, Gaikwad KK (2022) Bio-based materials for barrier coatings on paper packaging. Biomass Conversion and Biorefinery 1–16. https://doi.org/10.1007/s13399-022-03241-2

  31. Risite H, Salim MH, Oudinot BT et al (2022) Artemisia annua stems a new sustainable source for cellulosic materials: production and characterization of cellulose microfibers and nanocrystals. Waste Biomass Valorization 13:2411–2423

    Article  Google Scholar 

  32. Lu S, Ma T, Hu X et al (2022) Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw. J Sci Food Agric 102:312–321

    Article  Google Scholar 

  33. Wahib SA, Da’na DA, Al-Ghouti MA (2022) Insight into the extraction and characterization of cellulose nanocrystals from date pits. Arabian Journal of Chemistry 15:103650

    Article  Google Scholar 

  34. Balaji N, Natrayan L, Kaliappan S, Patil PP, Sivakumar NS (2022) Annealed peanut shell biochar as potential reinforcement for aloe vera fiber-epoxy biocomposite: mechanical, thermal conductivity, and dielectric properties. Biomass Conversion and Biorefinery 1–9. https://doi.org/10.1007/s13399-022-02650-7

  35. Alshahrani H, Vr AP (2022) Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite. Biomass Conversion and Biorefinery 1–12. https://doi.org/10.1007/s13399-022-02691-y

  36. Raza M, Abu-Jdayil B, Banat F, Al-Marzouqi AH (2022) Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega 7:25366–25379

    Article  Google Scholar 

  37. Syafri E, Jamaluddin, Harmailis, Umar S, Mahardika M, Amelia D, ... & Asiri AM. (2022). Isolation and characterization of new cellulosic microfibers from Pandan Duri (Pandanus tectorius) for sustainable environment. J Nat Fibers 19(16):12924–12934

  38. Asif M, Ahmed D, Ahmad N et al (2022) Extraction and characterization of microcrystalline cellulose from Lagenaria siceraria fruit pedicles. Polymers 14:1867

    Article  Google Scholar 

  39. Stalin N, Shobhanadevi N (2021) Studies on thermal, structural, and compositional properties of agro-waste jute fiber composite reinforced with cardanol resin. Biomass Conversion and Biorefinery. 1–8. https://doi.org/10.1007/s13399-021-01958-0

  40. Li K, Jin S, Zhang F, Zhou Y, Zeng G, Li J et al (2022) Bioinspired phenol-amine chemistry for developing bioadhesives based on biomineralized cellulose nanocrystals. Carbohydr Polym 296:119892

    Article  Google Scholar 

  41. Li K, Jin S, Li X, Li J, Shi SQ, Li J (2021) Bioinspired interface engineering of soybean meal-based adhesive incorporated with biomineralized cellulose nanofibrils and a functional aminoclay. Chem Eng J 421:129820

    Article  Google Scholar 

  42. Li K, Jin S, Wei Y, Li X, Li J, Shi SQ, Li J (2021) Bioinspired hyperbranched protein adhesive based on boronic acid-functionalized cellulose nanofibril and water-soluble polyester. Compos Part B Eng 219:108943

    Article  Google Scholar 

  43. Gnanasekaran S, Nordin NIAA, Jamari SS, Shariffuddin JH (2022) Effect of steam-alkaline coupled treatment on N36 cultivar pineapple leave fibre for isolation of cellulose. Materials Today: Proceedings 48:753–760

    Google Scholar 

  44. Stanislas TT, Tendo JF, Ojo EB et al (2022) Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants. Journal of Natural Fibers 19:1592–1608

    Article  Google Scholar 

  45. Benhamou AA, Kassab Z, Boussetta A et al (2022) Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: extraction and properties. Int J Biol Macromol 203:302–311

    Article  Google Scholar 

  46. Zope G, Goswami A, Kulkarni S. Isolation and characterization of cellulose nanocrystals produced by acid hydrolysis from banana Pseudostem. BioNanoSci. 2022;12:463–471. https://doi.org/10.1007/s12668-022-00960-8

  47. Yiga VA, Lubwama M, Pagel S, Olupot PW, Benz J, Bonten C (2021) Optimization of tensile strength of PLA/clay/rice husk composites using Box-Behnken design. Biomass Conversion and Biorefinery 1–27. https://doi.org/10.1007/s13399-021-01971-3

  48. Almeida PV, Rodrigues RP, Slezak R, Quina MJ (2022) Effect of phenolic compound recovery from agro-industrial residues on the performance of pyrolysis process. Biomass Conversion and Biorefinery 12(10):4257–4269. https://doi.org/10.1007/s13399-021-02292-1

  49. Sabarinathan P, Annamalai VE, Rajkumar K, Vishal K, Dhinakaran V (2022) Synthesis and characterization of randomly oriented silane-grafted novel bio-cellulosic fish tail palm fiber–reinforced vinyl ester composite. Biomass Conversion and Biorefinery 1–18. https://doi.org/10.1007/s13399-022-02459-4

  50. Arpitha GR, Verma A, MR, S., Gorbatyuk, S., Khan, A., Sobahi, T. R., & Siengchin, S. (2022) Bio-composite film from corn starch based vetiver cellulose. Journal of Natural Fibers 19(16):14634–14644

    Article  Google Scholar 

  51. Kataria A, Chaturvedi S, Chaudhary V, Verma A, Jain N, Sanjay MR, Siengchin S (2023) Cellulose fiber-reinforced composites—history of evolution, chemistry, and structure. In: Cellulose Fibre Reinforced Composites. Woodhead Publishing, pp 1–22

    Google Scholar 

  52. Rastogi S, Verma A, Singh VK (2020) Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Materials Performance and Characterization 9(1):151–172

    Article  Google Scholar 

  53. Chaturvedi S, Kataria A, Chaudhary V, Verma A, Jain N, Sanjay MR, Siengchin S (2023) Bionanocomposites reinforced with cellulose fibers and agro-industrial wastes. In Cellulose Fibre Reinforced Composites (pp. 317–342). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00017-3

  54. Poomathi S, Roji SSS (2022) Experimental investigations on Palmyra sprout fiber and biosilica-toughened epoxy bio composite. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02867-6

  55. Patil, P. P. (2022). Pear cactus fiber with onion sheath biocarbon nanosheet toughened epoxy composite: mechanical, thermal, and electrical properties. Biomass Conversion and Biorefinery 1–9. https://doi.org/10.1007/s13399-022-03335-x

  56. Akatwijuka O, Gepreel MAH, Abdel-Mawgood A et al (2022) Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02819-0

  57. Borbély A (2022) The modified Williamson-Hall plot and dislocation density evaluation from diffraction peaks. Scr Mater 217:114768

    Article  Google Scholar 

  58. Basak M, Rahman ML, Ahmed MF, Biswas B, Sharmin N (2022) The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach. J Alloys Compd 895:162694. https://doi.org/10.1016/j.jallcom.2021.162694

  59. Macchi J, Gaudez S, Geandier G, Teixeira J, Denis S, Bonnet F, Allain SY (2021) Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy X-Ray diffraction. Mater Sci Eng A. 800:140249. https://doi.org/10.1016/j.msea.2020.140249

  60. Gupta V, Ramakanth D, Verma C et al (2021) Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Conversion and Biorefinery 1–12

  61. Md Salim R, Asik J, Sarjadi MS (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology 55:295–313

    Article  Google Scholar 

  62. Jeyabalaji V, Kannan GR, Ganeshan P et al (2021) Extraction and characterization studies of cellulose derived from the roots of Acalypha indica L. Journal of Natural Fibers 1–13

  63. Mahmoud KH, Alsubaie AS, Abdel-Rahim FM, Wahab EA, Elsayed KA (2022) Effect of nitrogen plasma on optical parameters of erbium nitrate doped hydroxyethyl cellulose film. Alex Eng J 61(6):4219–4227. https://doi.org/10.1016/j.aej.2021.09.042

  64. Li W, Zhang H, Chen W et al (2022) The effects of cotton cellulose on both energy band gap of g-C3N4–TiO2 nanoparticles and enhanced photocatalytic properties of cotton-g-C3N4–TiO2 composites. Cellulose 29:193–212

    Article  Google Scholar 

  65. Chen L, Hu J, Han Q et al (2022) Application of distributed activation energy model and Coats-Redfern integration method in the study of industrial lignin pyrolysis kinetics. Biomass Conversion and Biorefinery 1–11

  66. Setswalo K, Oladijo OP, Namoshe M, Akinlabi ET, Sanjay RM, Siengchin S, Srisuk R (2023) The water absorption and thermal properties of green Pterocarpus angolensis (Mukwa)-polylactide composites. Journal of Natural Fibers 20(1):2124217

    Article  Google Scholar 

  67. Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18:355–363

    Article  Google Scholar 

  68. Tkachenko T, Sheludko Y, Yevdokymenko V et al (2022) Physico-chemical properties of flax microcrystalline cellulose. Appl Nanosci 12:1007–1020. https://doi.org/10.1007/s13204-021-01819-2

  69. Pokhriyal M, Rakesh PK, Rangappa SM, Siengchin S (2023) Effect of alkali treatment on novel natural fiber extracted from Himalayacalamus falconeri culms for polymer composite applications. Biomass Conversion and Biorefinery 1–17

  70. Rantheesh J, Indran S, Raja S et al (2023) Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro-industrial residual waste oil cake for futuristic applications. Biomass Conv Bioref 13;4393–4411. https://doi.org/10.1007/s13399-022-03467-0

Download references

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Funding

This research was fully supported by King Mongkut’s University of Technology North Bangkok under grant no. KMUTNB-Post-66-08.

Author information

Authors and Affiliations

Authors

Contributions

Kavimani V—writing original draft, visualization, and data curation.

Divya Divakaran—conceptualization, investigation, methodology, writing original draft, visualization, and data curation.

Malinee Sriariyanun—resources, formal analysis, validation, writing—review and editing, project administration, supervision, funding acquisition.

Suganya Priyadharshini G and Gopal PM—investigation, formal analysis, validation.

Indran Suyambulingam, Sanjay MR—conceptualization, investigation, methodology, visualization and supported for data interpretation.

Suchart Siengchin—resources, conceptualization, validation, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Divya Divakaran.

Ethics declarations

Ethics approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavimani, V., Divakaran, D., Sriariyanun, M. et al. Facile exfoliation and physicochemical characterization of biomass-based cellulose derived from Pandanus tectorius leaves for sustainable environment. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04187-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04187-9

Keywords

Navigation