Skip to main content
Log in

Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper investigates some inertial projection and contraction methods for solving pseudomonotone variational inequality problems in real Hilbert spaces. The algorithms use a new non-monotonic step size so that they can work without the prior knowledge of the Lipschitz constant of the operator. Strong convergence theorems of the suggested algorithms are obtained under some suitable conditions. Some numerical experiments in finite- and infinite-dimensional spaces and applications in optimal control problems are implemented to demonstrate the performance of the suggested schemes and we also compare them with several related results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. An, N.T., Nam, N.M.: Convergence analysis of a proximal point algorithm for minimizing differences of functions. Optimization 66, 129–147 (2017)

    Article  MathSciNet  Google Scholar 

  2. Beck, A.: First-Order Methods in Optimization. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Book  Google Scholar 

  3. Beck, A., Guttmann-Beck, N.: FOM-a MATLAB toolbox of first-order methods for solving convex optimization problems. Optim. Methods Softw. 34, 172–193 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bonnans, J.F., Festa, A.: Error estimates for the Euler discretization of an optimal control problem with first-order state constraints. SIAM J. Numer. Anal. 55, 445–471 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bressan, B., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences, San Francisco (2007)

    MATH  Google Scholar 

  6. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. 169, 217–245 (2020)

    Article  MathSciNet  Google Scholar 

  8. Cho, S.Y.: A monotone Bregan projection algorithm for fixed point and equilibrium problems in a reflexive Banach space. Filomat 34, 1487–1497 (2020)

    Article  MathSciNet  Google Scholar 

  9. Cho, S.Y.: Implicit extragradient-like method for fixed point problems and variational inclusion problems in a Banach space. Symmetry-Basel 12, 998 (2020)

    Article  Google Scholar 

  10. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  11. Dong, Q.L., Jiang, D., Gibali, A.: A modified subgradient extragradient method for solving the variational inequality problem. Numer. Algorithms 79, 927–940 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65, 2217–2226 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, T.M.: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. 70, 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  14. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gibali, A., Thong, D.V., Tuan, P.A.: Two simple projection-type methods for solving variational inequalities. Anal. Math. Phys. 9, 2203–2225 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gibali, A., Hieu, D.V.: A new inertial double-projection method for solving variational inequalities. J. Fixed Point Theory Appl. 21, Article ID 97 (2019)

  17. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  18. Hieu, D.V., Strodiot, J.J., Muu, L.D.: Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems. J. Comput. Appl. Math. 376, Article ID 112844 (2020)

  19. Khan, A.A., Motreanu, D.: Existence theorems for elliptic and evolutionary variational and quasi-variational inequalities. J. Optim. Theory Appl. 167, 1136–1161 (2015)

    Article  MathSciNet  Google Scholar 

  20. Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Èkonom. i Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Khanh, P.Q., Thong, D.V., Vinh, N.T.: Versions of the subgradient extragradient method for pseudomonotone variational inequalities. Acta Appl. Math. 170, 319–345 (2020)

    Article  MathSciNet  Google Scholar 

  22. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7, 1193–1214 (2013)

    Article  MathSciNet  Google Scholar 

  23. Liu, H., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl. 77, 491–508 (2020)

    Article  MathSciNet  Google Scholar 

  24. Preininger, J., Vuong, P.T.: On the convergence of the gradient projection method for convex optimal control problems with bang-bang solutions. Comput. Optim. Appl. 70, 221–238 (2018)

    Article  MathSciNet  Google Scholar 

  25. Pietrus, A., Scarinci, T., Veliov, V.M.: High order discrete approximations to Mayer’s problems for linear systems. SIAM J. Control. Optim. 56, 102–119 (2018)

    Article  MathSciNet  Google Scholar 

  26. Reich, S., Tuyen, T.M.: Two projection algorithms for solving the split common fixed point problem. J. Optim. Theory Appl. 186, 148–168 (2020)

    Article  MathSciNet  Google Scholar 

  27. Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities. Optim. Lett. 15, 2109–2126 (2021)

  28. Shehu, Y., Iyiola, O.S.: Strong convergence result for monotone variational inequalities. Numer. Algorithms 76, 259–282 (2017)

    Article  MathSciNet  Google Scholar 

  29. Shehu, Y., Gibali, A., Sagratella, S.: Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. J. Optim. Theory Appl. 184, 877–894 (2020)

    Article  MathSciNet  Google Scholar 

  30. Shehu, Y., Li, X.H., Dong, Q.L.: An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

    Article  MathSciNet  Google Scholar 

  31. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68, 385–409 (2019)

    Article  MathSciNet  Google Scholar 

  32. Shehu, Y., Iyiola, O.S.: Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence. Appl. Numer. Math. 157, 315–337 (2020)

    Article  MathSciNet  Google Scholar 

  33. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  34. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

    Article  MathSciNet  Google Scholar 

  35. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  36. Thong, D.V., Hieu, D.V.: Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Comput. Appl. Math. 38, Article ID 136 (2019)

  37. Thong, D.V., Gibali, A.: Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spaces. Jpn. J. Ind. Appl. Math. 36, 299–321 (2019)

    Article  MathSciNet  Google Scholar 

  38. Thong, D.V., Vinh, N.T., Cho, Y.J.: New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numer. Algorithms 84, 285–305 (2020)

    Article  MathSciNet  Google Scholar 

  39. Tan, B., Fan, J., Li, S.: Self-adaptive inertial extragradient algorithms for solving variational inequality problems. Comput. Appl. Math. 40, Article ID 19 (2021)

  40. Tan, B., Li, S.: Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems. J. Nonlinear Var. Anal. 4, 337–355 (2020)

    MATH  Google Scholar 

  41. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81, 269–291 (2019)

    Article  MathSciNet  Google Scholar 

  42. Yang, J.: Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Appl. Anal. 100, 1067–1078 (2021)

    Article  MathSciNet  Google Scholar 

  43. Yang, J.: The iterative methods for solving pseudomontone equilibrium problems. J. Sci. Comput. 84, Article ID 50 (2020)

Download references

Acknowledgements

The authors are very grateful to the editors and reviewers for their valuable and constructive comments that greatly improved the readability and quality of the initial version of the manuscript. This paper was supported by the National Natural Science Foundation of China under Grant No. 11401152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Qin, X. & Yao, JC. Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems. J Glob Optim 82, 523–557 (2022). https://doi.org/10.1007/s10898-021-01095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01095-y

Keywords

Mathematics Subject Classification

Navigation