Skip to main content
Log in

A modified subgradient extragradient method for solving the variational inequality problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The subgradient extragradient method for solving the variational inequality (VI) problem, which is introduced by Censor et al. (J. Optim. Theory Appl. 148, 318–335, 2011), replaces the second projection onto the feasible set of the VI, in the extragradient method, with a subgradient projection onto some constructible half-space. Since the method has been introduced, many authors proposed extensions and modifications with applications to various problems. In this paper, we introduce a modified subgradient extragradient method by improving the stepsize of its second step. Convergence of the proposed method is proved under standard and mild conditions and primary numerical experiments illustrate the performance and advantage of this new subgradient extragradient variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, P.N., An, L.T.H.: The subgradient extragradient method extended to equilibrium problems. Optimization 64, 225–248 (2015)

    Article  MathSciNet  Google Scholar 

  2. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. Mat. Metody 12, 1164–1173 (1976)

    Google Scholar 

  3. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Cai, X., Gu, G., He, B.: On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  Google Scholar 

  6. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Method Soft. 6, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for solving the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  Google Scholar 

  9. Dang, V.H.: New subgradient extragradient methods for common solutions to equilibrium problems. Comput. Optim. Appl. 67, 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dang, V.H.: Halpern subgradient extragradient method extended to equilibrium problems. Racsam Rev. R. Acad. A. 111, 1–18 (2016)

    Google Scholar 

  11. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65, 2217–2226 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dong, Q.L., Cho, Y.J., Zhong, L., Rassias, T.M.: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. https://doi.org/10.1007/s10898-017-0506-0 (2018)

    Article  MathSciNet  Google Scholar 

  14. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York and Basel (1984)

    MATH  Google Scholar 

  15. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  Google Scholar 

  16. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  17. Fang, C., Chen, S.: A subgradient extragradient algorithm for solving multi-valued variational inequality. Appl. Math. Comput. 229, 123–130 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Harker, P.T., Pang, J.-S.: A damped-Newton method for the linear complementarity problem. In: Allgower, G., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations, Lectures in Appl. Math, vol. 26, pp 265–284. AMS, Providence (1990)

  19. He, S., Wu, T.: A modified subgradient extragradient method for solving monotone variational inequalities. J. Inequal. Appl. 2017, 89 (2017)

    Article  MathSciNet  Google Scholar 

  20. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  21. Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Glob. Optim. https://doi.org/10.1007/s10898-017-0564-3 (2018)

    Article  MathSciNet  Google Scholar 

  22. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  23. He, S., Yang, C., Duan, P.: Realization of the hybrid method for Mann iterations. Appl. Math. Comput. 217, 4239–4247 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)

    Article  MathSciNet  Google Scholar 

  25. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mate. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  26. Kraikaew, R., Saejung, S.: Strong convergence of the halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optimiz. Theory App. 163, 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  27. Levitin, E.S., Polyak, B.T.: Constrained minimization problems. USSR Comput. Math. Math. Phys. 6, 1–50 (1966)

    Article  Google Scholar 

  28. Malitsky, Y.V.: Projected reflected gradient method for variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  29. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61(1), 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  30. Malitsky, Y.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybernet. Syst. Anal. 50, 271–277 (2014)

    Article  MathSciNet  Google Scholar 

  31. Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Popov, L.D.: A modification of the Arrow-Hurwicz method for searching for saddle points. Mat. Zametki 28, 777–784 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  34. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  35. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  36. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  37. Vinh, N.T., Hoai, P.T.: Some subgradient extragradient type algorithms for solving split feasibility and fixed point problems. Math. Method Appl. Sci. 39, 3808–3823 (2016)

    Article  MathSciNet  Google Scholar 

  38. Yang, Q.: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166–179 (2005)

    Article  MathSciNet  Google Scholar 

  39. Yao, Y., Marino, G., Muglia, L.: A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality. Optimization 63, 559–569 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zhou, H., Zhou, Y., Feng, G.: Iterative methods for solving a class of monotone variational inequality problems with applications. J. Inequal. Appl. 2015, 68 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zeidler, E.: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization. Springer, New York (1985)

    Book  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the two anonymous referees, whose careful readings and suggestions led to improvements in the presentation of the results.

Funding

The first author is supported by National Natural Science Foundation of China (No. 71602144) and Open Fund of Tianjin Key Lab for Advanced Signal Processing (No. 2017ASP-TJ03). The third author is supported by the EU FP7 IRSES program STREVCOMS, grant no. PIRSES-GA-2013-612669.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Li Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, QL., Jiang, D. & Gibali, A. A modified subgradient extragradient method for solving the variational inequality problem. Numer Algor 79, 927–940 (2018). https://doi.org/10.1007/s11075-017-0467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0467-x

Keywords

Mathematics Subject Classification (2010)

Navigation