Skip to main content
Log in

Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

We propose a modified extragradient method with dynamic step size adjustment to solve variational inequalities with monotone operators acting in a Hilbert space. In addition, we consider a version of the method that finds a solution of a variational inequality that is also a fixed point of a quasi-nonexpansive operator. We establish the weak convergence of the methods without any Lipschitzian continuity assumption on operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kinderlehrer and G. Stampacchia, “An introduction to vatiational inequalities and their applications,” SIAM Review, 23, No. 4, 539–543 (1981).

    Google Scholar 

  2. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, Wiley & Sons (1984).

  3. A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht (1999).

    Book  Google Scholar 

  4. V. V. Semenov and N. V. Semenova, “A vector problem of optimal control in a Hilbert space,” Cybern. Syst. Analysis, 41, No. 2, 255–266 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. B. Bakushinskii and A. V. Goncharskii, Ill-Posed Problems. Numerical Methods and Applications [in Russian], Izd-vo MGU, Moscow (1989).

    Google Scholar 

  6. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problem, Vol. 2, Springer, New York (2003).

    Google Scholar 

  7. H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Spinger, Berlin–Heidelberg–New York (2011).

    Book  MATH  Google Scholar 

  8. I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer-Verlag, Berlin–Heidelberg–New York (2001).

    Book  MATH  Google Scholar 

  9. V. M Panin, V. V. Skopetskii, and T. V. Lavrina, “Models and methods of finite-dimensional variational inequalities,” Cybern. Syst. Analysis, 36, No. 6, 829–844 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Xiu and J. Zhang, “Some recent advances in projection-type methods for variational inequalities,” J. Comput. Appl. Math., 152, 559–585 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. Yu. Nesterov, “Dual extrapolation and its applications to solving variational inequalities and related problems,” Mathematical Programming, 109, Iss. 2–3, 319–344 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. E. A. Nurminskii, “The use of additional diminishing disturbances in Fejer models of iterative algorithms, Comp. Math. Math. Phys., 48, No. 12, 2154–2161 (2008).

    Article  MathSciNet  Google Scholar 

  13. V. V. Semenov, “On the parallel proximal decomposition method for solving the problems of convex optimization,” J. Autom. Inform. Sci., 42, No. 4, 42–46 (2010).

    Article  Google Scholar 

  14. V. V. Semenov, “Convergence of the methods of solution of two-level variational inequalities with monotone operators,” Zhurn. Obch. Prykl. Mat., No. 2 (101), 120–128 (2010).

  15. T. A. Voitova and V. V. Semenov, “A method to solve two-stage functional inclusions,” Zhurn. Obch. Prykl. Mat., No. 3 (102), 34–39 (2010).

  16. Yu. V. Malitskii and V. V. Semenov, “New theorems of the strong convergence of the proximal method for the equilibrium programming problem,” Zhurn. Obch. Prykl. Mat., No. 3 (102), 79–88 (2010).

  17. S. V. Denisov and V. V. Semenov, “Proximal algorithm for two-level variational inequalities: Strong convergence,” Zh. Vych. Prikl. Mat., No. 3 (106), 27–32 (2011).

  18. V. V. Semenov, “Parallel decomposition of variational inequalities with monotone operators,” Zhurn. Obch. Prikl. Matem., No. 2 (108), 53–58 (2012).

  19. Yu. V. Malitskii and V. V. Semenov, “The scheme of exterinal approximations for variational inequalities on the set of fixed points of Fejer operators,” Dop. NAN Ukrainy, No. 7, 47–52 (2013).

  20. V. V. Semenov, “Strongly convergent algorithms for variational inequality problem over the set of solutions the equilibrium problems,” in: M. Z. Zgurovskii and V. A. Sadovnichii (eds.), Continuous and Distributed Systems. Solid Mechanics and its Applications, Springer International Publishing Switzerland, 211, 131–146 (2014).

  21. G. M. Korpelevich, “Exstragradient method to find saddle points and other problems,” Ekonomika i Mat. Metody, 12, No. 4, 747–756 (1976).

    MATH  MathSciNet  Google Scholar 

  22. E. N. Khobotov, “Modification of the extragradient method for the solution of variational inequalities and some optimization problems,” Zhurn. Vych. Mat. Mat. Fiz., 27, No. 10, 1462–1473 (1987).

    MathSciNet  Google Scholar 

  23. P. Tseng, “A modified forward-backward splitting method for maximal monotone mappings,” SIAM J. Control Optim., 38, 431–446 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Nadezhkina and W. Takahashi, “Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings,” SIAM J. Optim., 16, No. 4, 1230–1241 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Nadezhkina and W. Takahashi, “Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings,” J. Optimiz. Theory and Appl., 128, 191–201 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  26. T. A. Voitova, S. V. Denisov, and V. V. Semenov, “A strongly converging modified variant of the Korpelevich method for equilibrium programming problems,” Zhurn. Obch. Prykl. Matem., No. 1 (104), 10–23 (2011).

  27. Y. Censor, A. Gibali, and S. Reich, “The subgradient extragradient method for solving variational inequalities in Hilbert space,” J. Optimiz. Theory and Appl., 148, 318–335 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  28. S. I. Lyashko, V. V. Semenov, and T. A. Voitova, “Low-cost modification of Korpelevich’s method for monotone equilibrium problems,” Cybern. Syst. Analysis, 47, No. 4, 631–639 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Ya. Apostol, A. A. Grinenko, and V. V. Semenov, “Iterative algorithms for monotone two-level variational inequalities,” Zhurn. Obch. Prykl. Matem., No. 1 (107), 3–14 (2012).

  30. D. N. Zaporozhets, A. V. Zykina, and N. V. Melen’chuk, “Comparative analysis of the extragradient methods for solution of the variational inequalities of some problems,” Automation and Remote Control, 73, No. 4, 32–46 (2012).

    Article  MathSciNet  Google Scholar 

  31. Yu. V. Malitsky and V. V. Semenov, “An extragradient algorithm for monotone variational inequalities,” Cybern. Syst. Analysis, 50, No. 2, 271–277 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  32. V. V. Semenov, “A strongly convergent splitting method for systems of operator inclusions with monotone operators,” J. Autom. Inform. Sci., 46, No. 5, 45–56 (2014).

    Article  Google Scholar 

  33. V. V. Semenov, “Hybrid splitting metods for the system of operator inclusions with monotone operators,” Cybern. Syst. Analysis, 50, No. 5, 741–749 (2014).

    Article  MATH  Google Scholar 

  34. Yu. V. Malitsky and V. V. Semenov, “A hybrid method without extrapolation step for solving variational inequality problems,” J. Global Optimiz., 61, No. 1, 193–202 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  35. V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejer Type (The Theory and Applications) [in Russian], Regulyarn. Khaotich. Dinamika, Moscow–Izhevsk (2005).

  36. Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Amer. Math. Soc., 73, 591–597 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  37. K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups,” J. Math. Anal. Appl., 279, 372–379 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Denisov, V. V. Semenov or L. M. Chabak.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 5, September–October, 2015, pp. 102–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, S.V., Semenov, V.V. & Chabak, L.M. Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators. Cybern Syst Anal 51, 757–765 (2015). https://doi.org/10.1007/s10559-015-9768-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-015-9768-z

Keywords

Navigation