Skip to main content
Log in

Convergence of an extragradient-type method for variational inequality with applications to optimal control problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Our aim in this paper is to introduce an extragradient-type method for solving variational inequality with uniformly continuous pseudomonotone operator. The strong convergence of the iterative sequence generated by our method is established in real Hilbert spaces. Our method uses computationally inexpensive Armijo-type linesearch procedure to compute the stepsize under reasonable assumptions. Finally, we give numerical implementations of our results for optimal control problems governed by ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numer. Algebra Control Optim. 2, 547–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities; Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimization 61, 855–871 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnans, J.F., Festa, A.: Error estimates for the Euler discretization of an optimal control problem with first-order state constraints. SIAM J. Numer. Anal. 55, 445–471 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bressan, B., Piccoli, B.: Introduction to the mathematical theory of control, AIMS series on applied mathematics (2007)

  8. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  9. Ceng, L.-C., Teboulle, M., Yao, J.-C.: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 146, 19–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceng, L.-C., Yao, J.-C.: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 190, 205–215 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dontchev, A.L., Hager, W.W.: Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Optim. 31, 569–603 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer Series in Operations Research, Springer, New York (2003)

    MATH  Google Scholar 

  15. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  16. Halpern, B.: Fixed points of nonexpanding maps. Proc. Amer. Math. Soc. 73, 957–961 (1967)

    MathSciNet  MATH  Google Scholar 

  17. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185, 166–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iusem, A.N.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Global Optim. 50, 59–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanzow, C., Shehu, Y.: Strong convergence of a double projection-type method for monotone variational inequalities in Hilbert spaces, J. Fixed Point Theory Appl. 20. Article 51 (2018)

  22. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khanh, P.D.: A modified extragradient method for infinite-dimensional variational inequalities. Acta. Math. Vietnam 41, 251–263 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Global Optim 58, 341–350 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)

    Article  MATH  Google Scholar 

  26. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7, 1193–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. 10, 1669–1679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  29. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  30. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ékon. Mat. Metody 12, 747–756 (1976). (In Russian)

    MathSciNet  MATH  Google Scholar 

  31. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maingé, P.-E., Gobinddass, M.L.: Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maingé, P.-E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59, 74–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maingé, P.-E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Malitsky, Y.V., Semenov, V. V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Global Optim. 61, 193–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Malitsky, Y.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Marcotte, P.: Applications of Khobotov’s algorithm to variational and network equlibrium problems. INFOR Inf. Syst. Oper. Res. 29, 258–270 (1991)

    MATH  Google Scholar 

  38. Mashreghi, J., Nasri, M.: Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory. Nonlinear Anal. 72, 2086–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nagurney, A.: Network Economics: a Variational Inequality Approach. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  43. Nikol’skii, M.S.: Convergence of the gradient projection method in optimal control problems. Comp. Math. Model. 18, 148–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pietrus, A., Scarinci, T., Veliov, V.M.: High order discrete approximations to Mayer’s problems for linear systems. SIAM J. Control Optim. 56, 102–119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Preininger, J., Vuong, P.T.: On the convergence of the gradient projection method for convex optimal control problems with bang-bang solutions. Comput. Optim. Appl. 70, 221–238 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shehu, Y., Iyiola, O.S.: Strong convergence result for monotone variational inequalities. Numer. Algorithms 76, 259–282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shehu, Y., Iyiola, O.S.: Iterative Algorithms for solving Fixed Point Problems and Variational Inequalities with Uniformly Continuous Monotone Operators, Numer. Algorithms. https://doi.org/10.1007/s11075-017-0449-z

  49. Shehu, Y., Iyiola, O.S.: On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2018045

  50. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sun, D.: A projection and contraction method for the nonlinear complementarity problem and its extensions. Math. Numer. Sin. 16, 183–194 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, Y.J., Xiu, N.H., Wang, C.Y.: Unified framework for extragradient-type methods for pseudomonotone variational inequalities. J. Optim. Theory Appl. 111, 641–656 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xiu, N.H., Wang, C.Y., Zhang, J.Z.: Convergence properties of projection and contraction methods for variational inequality problems. Appl. Math. Optim. 43, 147–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu, H.-K.: Iterative algorithms for nonlinear operators. J. London. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yao, Y., Postolache, M.: Iterative methods for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 155, 273–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ye, M., He, Y.: A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 60, 141–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zeng, L.-C., Yao, J.-C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math. 10, 1293–1303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nguyen Thanh Qui and two anonymous referees for their useful comments and suggestions on the first version the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Tu Vuong.

Additional information

The research of the second author is supported by the Alexander von Humboldt-Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, P.T., Shehu, Y. Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer Algor 81, 269–291 (2019). https://doi.org/10.1007/s11075-018-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0547-6

Keywords

Navigation