Skip to main content
Log in

Two Projection Algorithms for Solving the Split Common Fixed Point Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the split common fixed point problem for Bregman relatively nonexpansive operators in real reflexive Banach spaces. Using Bregman distances, we propose two new projection algorithms for solving this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Elfving, T.: A multi projection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Probl. 21, 2071–2084 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99, 299–306 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16, 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Wang, F., Xu, H.-K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Xu, H.-K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Problems 22, 2021–2034 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Xu, H.-K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Reich, S., Tuyen, T.M.: A new algorithm for solving the split common null point problem in Hilbert spaces. Numer. Algorithms 83, 789–805 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Reich, S., Tuyen, T.M.: Iterative methods for solving the generalized split common null point problem in Hilbert spaces. Optimization 69, 1013–1038 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Tuyen, T.M.: A strong convergence theorem for the split common null point problem in Banach spaces. Appl. Math. Optim. 79, 207–227 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Tuyen, T.M., Ha, N.S., Thuy, N.T.T.: A shrinking projection method for solving the split common null point problem in Banach spaces. Numer. Algorithms 81, 813–832 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Tuyen, T.M., Ha, N.S.: A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces. J. Fixed Point Theory Appl. 20, 140 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Landweber, L.: An iterative formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)

    MathSciNet  MATH  Google Scholar 

  25. Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Brègman, L.M.: A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 620–631 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer, New York (2000)

    MATH  Google Scholar 

  28. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  31. Zegeye, H.: Convergence theorems for Bregman strongly nonexpansive mappings in reflexive Banach spaces. Filomat 7, 1525–1536 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Censor, Y., Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37, 323–339 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313–318. Marcel Dekker, New York (1996)

    Google Scholar 

  34. Butnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. Anal. 7, 151–174 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 301–316. Springer, New York (2011)

    MATH  Google Scholar 

  36. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  37. Resmerita, E.: On total convexity, Bregman projections and stability in Banach spaces. J. Convex Anal. 11, 1–16 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Butnariu, D., Iusem, A.N.: Totally convex functions for fixed points computation and infinite dimensional optimization. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  39. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Reich, S., Tuyen, T.M.: Two projection methods for solving the multiple-set split common null point problem in Hilbert spaces. Optimization (2019). https://doi.org/10.1080/02331934.2019.1686633

    Article  Google Scholar 

  41. Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in Hilbert space. Math. Program. 87, 189–202 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123, 46–63 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Moreau, J.-J.: Sur la fonction polaire d’une fonction semi-continue supérieurement. C. R. Acad. Sci. Paris 258, 1128–1130 (1964)

    MathSciNet  MATH  Google Scholar 

  44. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  46. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Butnariu, D., Kassay, G.: A proximal-projection method for finding zeroes of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122–135 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund. The second author was supported by the Science and Technology Fund of the Thai Nguyen University of Sciences. Both authors are grateful to the editors and the referees for their useful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Minh Tuyen.

Additional information

Communicated by Jalal M. Fadili.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, S., Tuyen, T.M. Two Projection Algorithms for Solving the Split Common Fixed Point Problem. J Optim Theory Appl 186, 148–168 (2020). https://doi.org/10.1007/s10957-020-01702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01702-0

Keywords

Mathematics Subject Classification

Navigation