Skip to main content
Log in

Triple-metal gate work function engineering to improve the performance of junctionless cylindrical gate-all-around Si nanowire MOSFETs for the upcoming sub-3-nm technology node

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Moore’s law, along with the International Roadmap for Devices and Systems, continues to guide the scaling of devices below 10 nm. The challenges posed by such small-dimensioned devices form the basis of the present work. A junctionless MOSFET with a triple-metal gate structure is proposed as an alternative to conventional single-gate bulk MOSFETs for future CMOS technology. The present work investigated the direct current and analog/radio frequency characteristics including the drain current \(({I}_{{\text{D}}}\)), transconductance \({(g}_{m})\), transconductance generation factor (TGF), cut-off frequency \({(f}_{T})\), frequency–transconductance product (FTP), transit time \((\tau ),\) and the total resistance of the source region, drain region, and channel \({(R}_{{\text{SD}}+{\text{CH}}})\) for triple-metal (TM) inversion-mode (IM) and junctionless (JL) cylindrical gate-all-around (CGAA) silicon nanowire (SiNW) MOSFETs with 3-nm gate length using the Silvaco ATLAS 3D TCAD tool. The non-equilibrium Green’s function and the self-consistent solution of the Schrödinger and Poisson equations were considered. The channel was taken to be lightly doped in the case of the IM TM CGAA SiNW device. The effect of the TM gate work function engineering for a SiNW channel with a diameter of 3 nm and gate oxide \(({{{\text{Al}}}_{2}{\text{O}}}_{3})\) thickness of 0.8 nm was investigated with respect to \({I}_{D}\),\({ g}_{m}\), TGF, \({f}_{T}\), \(\tau\), FTP, and \({R}_{{\text{SD}}+{\text{CH}}}\), and a comparative study between the IM TM and JL TM CGAA SiNW devices was carried out with respect to these parameters. For the JL device, optimization of the doping concentration was performed to obtain the same (i) ION current and (ii) threshold voltage (VTH) as the IM device. An 8.61- and 5.72-fold reduction in IOFF was seen for the same ION and VTH for the JL versus the IM device. It was found that the TM gate variation led to a reduction in drain-induced barrier lowering (DIBL) in the IM and JL devices. The JL SiNW showed much lower DIBL of ~39.49 mV/V, a near-ideal subthreshold slope (SS) of ~60 mV/dec, and higher \({{\text{I}}}_{{\text{ON}}}/{{\text{I}}}_{{\text{OFF}}}\) current ratio of ~2.98 × 1012. which is much better than the values reported in the literature for CGAA devices. Also, the JL SiNW device was found to perform better than the IM SiNW device in terms of SS, DIBL, \({{\text{I}}}_{{\text{ON}}}/{{\text{I}}}_{{\text{OFF}}}\), \({g}_{m},\) TGF, fT, \(\tau\), FTP, and \({R}_{{\text{SD}}+{\text{CH}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data are available within this paper.

References

  1. Das, U.K., Eneman, G., Velampati, R.S.R., Chauhan, Y.S., Jinesh, K.B., Bhattacharyya, T.K.: Consideration of UFET architecture for the 5 nm node and beyond logic transistor. J. Electron Devices Soc. 6, 1129–1135 (2018). https://doi.org/10.1109/JEDS.2018.2868686

    Article  Google Scholar 

  2. Baidya, A., Baishya, S., Lenk, T.R.: Impact of thin high-κ dielectrics and gate metals on RF characteristics of 3D double gate junctionless transistor. Mater. Sci. Semicond. Process. 71, 413–420 (2017). https://doi.org/10.1016/j.mssp.2017.08.031

    Article  Google Scholar 

  3. Lema, F.A., Wang, X., Amoroso, S.M., Riddet, C., Cheng, B., Shifren, L., Aitken, R., Sinha, S., Yeric, G., Asenov, A.: Performance and variability of doped multithreshold FinFETs for 10-nm CMOS. IEEE Trans. Electron Devices 61, 3372–3378 (2014). https://doi.org/10.1109/TED.2014.2346544

    Article  Google Scholar 

  4. Anvarifard, M.K.: Increase in the scattering of electric field lines in a new high voltage SOI MESFET. Superlattices Microstruct. 97, 15–27 (2016). https://doi.org/10.1016/j.spmi.2016.06.005

    Article  Google Scholar 

  5. International Technology Roadmaps for Semiconductor (ITRS), (1999), (2003), (2005), (2007), (2009), and (2011) Edition. http://www.itrs.net

  6. International Roadmap for Devices and Systems, Beyond CMOS. (2017). https://irds.ieee.org/images/files/pdf/2017/2017IRDS_BC.pdf

  7. International Roadmap for Devices and Systems, Emerging Research Materials. (2017). https://irds.ieee.org/images/files/pdf/2017/2017IRDS_ERM.pdf

  8. Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86, 1–9 (2009). https://doi.org/10.1016/j.mee.2009.03.129

    Article  Google Scholar 

  9. Bousari, N.B., Anvarifard, M.K., Haji-Nasiri, S.: Benefitting from High-κ spacer engineering in balistic triple-gate junctionless FinFET-a full quantum study. SILICON 12, 2221–2228 (2019). https://doi.org/10.1007/s12633-019-00318-y

    Article  Google Scholar 

  10. Das, U.K., Bardon, M.G., Jang, D., Eneman, G., Schuddinck, P., Yakimets, D., Raghavan, P., Groeseneken, G.: Limitations on lateral nanowire scaling beyond 7nm node. IEEE Electron Device Lett. 38, 9–11 (2017). https://doi.org/10.1109/LED.2016.2629420

    Article  Google Scholar 

  11. Suddapalli, S.R., Nistala, B.R.: The analog/RF performance of a strained-Si graded-channel dual-material double-gate MOSFET with interface charges. J. Comput. Electron. 20, 492–502 (2021). https://doi.org/10.1007/s10825-020-01578-3

    Article  Google Scholar 

  12. Garg, A., Singh, Y., Singh, B.: Dual-channel junctionless FETs for improved analog/RF performance. SILICON 13, 1499–1507 (2021). https://doi.org/10.1007/s12633-020-00545-8

    Article  Google Scholar 

  13. Thakur, A., Dhiman, R.: Impacts of core gate thickness and Ge content variation on the performance of Si1−xGex source/drain Si–nanotube JLFET. J. Comput. Electron. 20, 237–247 (2021). https://doi.org/10.1007/s10825-020-01618-y

    Article  Google Scholar 

  14. Hirpara, T., Saha, R.: Analysis on DC and RF/analog performance in multi fin-FinFET for wide variation in work function of metal gate. SILICON 13, 73–77 (2021). https://doi.org/10.1007/s12633-020-00408-2

    Article  Google Scholar 

  15. Kumar, S., Chatterjee, A.K., Pandey, R.: Performance analysis of gate electrode work function variations in double-gate junctionless FET. SILICON 13, 3447–3459 (2021). https://doi.org/10.1007/s12633-020-00774-x

    Article  Google Scholar 

  16. Sirohi, A., Sahu, C.: Analog/RF performance investigation of dopingless FET for ultra-low power applications. IEEE Access 7, 141810–141816 (2019). https://doi.org/10.1109/ACCESS.2019.2937444

    Article  Google Scholar 

  17. Jaiswal, N., Kranti, A.: Modeling short-channel effects in core-shell junctionless MOSFET. IEEE Trans. Electron Devices 66, 292–299 (2019). https://doi.org/10.1109/TED.2018.2881006

    Article  Google Scholar 

  18. Lime, F., Moldovan, O., Iñiguez, B.: A compact explicit model for long-channel gate-all-around junctionless MOSFETs. Part I: DC characteristics. IEEE Trans. Electron Devices 61, 3036–3041 (2014). https://doi.org/10.1109/TED.2014.2340441

    Article  Google Scholar 

  19. Su, C.C.J., Tsai, T.I., Liou, Y.L., Lin, Z.M., Lin, H.C., Chao, T.S.: Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Lett. 32, 521–523 (2011). https://doi.org/10.1109/LED.2011.2107498

    Article  Google Scholar 

  20. Sahay, S., Kumar, M.J.: Controlling L-BTBT and volume depletion in nanowire JLFETs using core-shell architecture. IEEE Trans. Electron Device 63, 3790–3794 (2016). https://doi.org/10.1109/TED.2016.2591588

    Article  Google Scholar 

  21. Pratap, Y., Kumar, M., Kabra, S., Haldar, S., Gupta, R.S., Gupta, M.: Analytical modeling of gate-all-around junctionless transistor-based biosensor for detection of neural biomolecule species. J. Comput. Electrons 17, 288–296 (2017). https://doi.org/10.1007/s10825-017-1041-4

    Article  Google Scholar 

  22. Moldovan, O., Lime, F., Iniguez, B.: A compact explicit model for long-channel gate-all-around junctionless MOSFETs. part-II: total charges and intrinsic capacitance characteristics. IEEE Trans. Electron Devices 61, 3042–3046 (2014). https://doi.org/10.1109/TED.2014.2342273

    Article  Google Scholar 

  23. Guin, S., Sil, M., Malik, A.: Comparison of logic performance of CMOS circuits implemented with junctionless and inversion-mode FinFETs. IEEE Trans. Electron Devices 64, 953–959 (2017). https://doi.org/10.1109/TED.2017.2655541

    Article  Google Scholar 

  24. Tayal, S., Nandi, A.: Optimization of gate-stack in junctionless Si-nanotube FET for analog/RF applications. Mater. Sci. Semicond. Process. 80, 63–67 (2018). https://doi.org/10.1016/j.mssp.2018.02.014

    Article  Google Scholar 

  25. Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Akhavan, N.D., Razavi, R.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011). https://doi.org/10.1016/j.sse.2011.06.004

    Article  Google Scholar 

  26. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., Neill, B.O., Blake, A., White, M., Kelleher, A.M., Carthy, B.M., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010). https://doi.org/10.1038/nnano.2010.15

    Article  Google Scholar 

  27. Moon, D.I., Choi, S.J., Duarte, J.P., Choi, Y.K.: Investigation of silicon nanowire gate-all-around junctionless transistor built on a bulk substrate. IEEE Trans. Electron Devices 60, 1355–1360 (2013). https://doi.org/10.1109/TED.2013.2247763

    Article  Google Scholar 

  28. Sahay, S., Kumar, M.J.: Symmetric operation in an extended back gate JLFET for scaling to the 5-nm regime considering quantum confinements. IEEE Trans. Electron Devices 64, 21–27 (2017). https://doi.org/10.1109/TED.2016.2628763

    Article  Google Scholar 

  29. Sahay, S., Kumar, M.J.: Spacer design guidelines for nanowire fets from gate-induced drain leakage perspective. IEEE Trans. Electron Devices 64, 3007–3015 (2017). https://doi.org/10.1109/TED.2017.2702067

    Article  Google Scholar 

  30. Kundu, A., Dasgupta, A., Das, R., Chakraborty, S., Dutta, A., Sarkar, C.K.: Influence of underlap on gate stack DG-MOSFET for analytical study of analog/RF performance. Superlattices Microstruct. 94, 60–73 (2016). https://doi.org/10.1016/j.spmi.2016.04.013

    Article  Google Scholar 

  31. Jena, B., Pradhan, K.P., Sahu, P.K., Dash, S., Mishra, G.P., Mohapatra, S.K.: Investigation on cylindrical gate all around (GAA) to nanowire MOSFET for circuit application. Electron. Energ. 28, 637–643 (2015). https://doi.org/10.2298/FUEE1504637J

    Article  Google Scholar 

  32. Jena, B., Pradhan, K.P., Dash, D., Mishra, G.P., Sahu, P.K., Mohapatra, S.K.: Performance analysis of undoped cylindrical gate all around (GAA) MOSFET at subthreshold regime. Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 035010 (2015). https://doi.org/10.1088/2043-6262/6/3/035010

    Article  Google Scholar 

  33. Kumar, N., Raman, A.: Design and investigation of charge-plasma-based work function engineered dual-metal-heterogeneous gate Si-Si0.55Ge0.45 GAA-cylindrical NWTFET for ambipolar analysis. IEEE Trans. Electron Devices 66, 1468–1474 (2019). https://doi.org/10.1109/TED.2019.2893224

    Article  Google Scholar 

  34. Kumar, N., Raman, A.: Prospective sensing applications of novel heteromaterial based dopingless nanowire-TFET at low operating voltage. IEEE Trans. Nanotechnol. 19, 527–534 (2020). https://doi.org/10.1109/TNANO.2020.3005026

    Article  Google Scholar 

  35. Kumar, P., Gupta, M., Kr, G., Kumar, N., Yadav, V.: Comparison of silicon and silicon-tungsten disulphide heterojunction based tub-type back gated MOSFET using non-equilibrium green’s function. Trans. Electr. Electron. Mater. 22, 467–472 (2020). https://doi.org/10.1007/s42341-020-00251-7

    Article  Google Scholar 

  36. Kumari, N., Raman, A., Kakkar, D.: Noise distortion analysis of the designed eterodielectric dual-material gate dopingless nanowire FET. J. Electron. Mater. 52, 3253–3263 (2023). https://doi.org/10.1007/s11664-023-10288-y

    Article  Google Scholar 

  37. Kumar, P., Gupta, M., Kumar, N., Cruz, M.D., Singh, H., Ishan, Anand, K.: Performance evaluation of silicon-transition metal dichalcogenides heterostructure based steep subthreshold slope-field effect transistor using non-equilibrium green's function. Sens. Lett. 18:468–476 (2020). https://doi.org/10.1166/SL.2020.4236

  38. Yokoyama, M., Kim, S., Zhang, R., Taoka, N., Urabe, Y., Maeda, T., Takagi, H., Yasuda, T., Yamada, H., Ichikawa, O., Fukuhara, N., Hata, M., Sugiyama, M., Nakano, Y., Takenaka, M., Takagi, S.: III-V/Ge high mobility channel integration of InGaAs n-channel and Ge p-channel metal-oxide-semiconductor field-effect transistors with self-aligned Ni-based metal source/drain using direct wafer bonding. Appl. Phys. Express 5, 076501–076503 (2012). https://doi.org/10.1143/APEX.5.076501

    Article  Google Scholar 

  39. Silvaco ATLAS User Manual (T-CAD Version: ATLAS 5.19.20.R, 2023).

  40. Muller, R.S., Kamins, T., Chan, M.: Device electronics for integrated circuits. Wiley (2009)

    Google Scholar 

  41. Robertsosn, J., Falabretti, B.: Band offsets of high-κ gate oxides on III-V semiconductors. J. Appl. Phys. 100, 014111–014118 (2006). https://doi.org/10.1063/1.2213170

    Article  Google Scholar 

  42. Kita, K., Toriumi, A.: Origin of electric dipoles formed at high-κ/SiO2 interface. Appl. Phys. Lett. 94, 132902–132903 (2009). https://doi.org/10.1063/1.3110968

    Article  Google Scholar 

  43. Kai, H., Xiaolei, W., Hong, Y., Wenwu, W.: Electric dipole formation at high-κ dielectric/SiO2 interface. J. Semicond. 36, 036004–036013 (2015). https://doi.org/10.1088/1674-4926/36/3/036004

    Article  Google Scholar 

  44. Kasturi, P., Saxena, M., Gupta, M., Gupta, R.S.: Dual material double-layer gate stack SON MOSFET: a novel architecture for enhanced analog performance—part I: impact of gate metal workfunction engineering. IEEE Trans. Electron Devices 55, 372–381 (2008). https://doi.org/10.1109/TED.2007.910564

    Article  Google Scholar 

  45. Sharma, R.K., Gupta, R., Gupta, M., Gupta, R.S.: Dual material double-gate SOI n-MOSFET: gate misalignment analysis. IEEE Trans. Electron Devices 56, 1284–1291 (2009). https://doi.org/10.1109/TED.2009.2019695

    Article  Google Scholar 

  46. Baruah, R.K., Paily, R.P.: A dual-material gate junctionless transistor with high-κ spacer for enhanced analog performance. IEEE Trans. Electron Devices 61, 123–128 (2014). https://doi.org/10.1109/TED.2013.2292852

    Article  Google Scholar 

  47. Rewari, S., Nath, V., Haldar, S., Deswal, S.S., Gupta, R.S.: Novel design to improve band to band tunneling and gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET. Microsyst. Technol. 25, 1537–1546 (2017). https://doi.org/10.1007/s00542-017-3446-1

    Article  Google Scholar 

  48. Razavi, B.: Analog CMOS integrated circuits. McGraw-Hill (2017)

    Google Scholar 

  49. Sze, A.M., Ng, K.K.: Physics of semiconductor devices. John Wiley & Sons (2007)

    Google Scholar 

  50. Ahn, M.J., Saraya, T., Kobayashi, M., Sawamoto, N., Ogura, A., Hiramoto, T.: Superior subthreshold characteristics of gate-all-around (GAA) p-type junctionless poly-Si nanowire transistor with ideal subthreshold slope. Jpn. J. Appl. Phys. 59, 070908 (2020). https://doi.org/10.35848/1347-4065/ab9e7d

    Article  Google Scholar 

  51. Wilk, G.D., Wallace, R.M., Anthony, J.M.: High-k dielectrics: current status and materials properties. J. Appl. Phys. 89(10), 5243–5275 (2001). https://doi.org/10.1063/1.1361065

    Article  Google Scholar 

  52. Hu, C.: Modern semiconductor devices for integrated circuits. 1st Edition, Pearson, Chapter 6, Section 6.11, pp. 227, (2009)

  53. Sanjay, P.B., Vohra, A.: Dual material gate engineering to reduce DIBL in cylindrical gate all around Si nanowire MOSFET for 7-nm gate length. Semiconductors 54, 1490–1495 (2020). https://doi.org/10.1134/S1063782620110111

    Article  Google Scholar 

  54. Nagy, D., Indalecio, G., Loureiro, A.J.G., Elmessary, M.A., Kalna, K., Seoane, N.: FinFET versus gate-all-around nanowire FET: performance, scaling and variability. IEEE J. Electron Devices Soc. 6, 332–340 (2018). https://doi.org/10.1109/JEDS.2018.2804383

    Article  Google Scholar 

  55. Zheng, P., Liao, Y.B., Damrongplasit, N., Chiang, M.H., Liu, T.J.K.: Variation-aware comparative study of 10-nm GAA versus FinFET 6-T SRAM performance and yield. IEEE Trans. Electron Devices 61, 3949–3954 (2014). https://doi.org/10.1109/TED.2014.2360351

    Article  Google Scholar 

  56. Liao, Y.B., Chiang, M.H., Damrongplasit, N., Hsu, W.C., Liu, T.J.K.: Design of gate-all-around silicon MOSFETs for 6-T SRAM area efficiency and yield. IEEE Trans. Electron Devices 61, 2371–2377 (2014). https://doi.org/10.1109/TED.2014.2323059

    Article  Google Scholar 

  57. Razavi, P., Fagas, G.: Electrical performance of III-V gate-all-around nanowire transistors. Appl. Phys. Lett. 103, 063506 (2013). https://doi.org/10.1063/1.4817997

    Article  Google Scholar 

  58. Luryi, S.: Quantum capacitance devices. Appl. Phys. Lett. 52, 501–503 (1988). https://doi.org/10.1063/1.99649

    Article  Google Scholar 

  59. Colinge, J.P.: The new generations of SOI MOSFETs. Rom. J. Infor. Sci. Technol. 11, 3–15 (2008)

    Google Scholar 

  60. Eshkalak, M.A., Anvarifard, M.K.: A guideline for achieving the best electrical performance with strategy of halo in graphene nanoribbon field effect transistor. ECS J. Solid State Sci. Technol. 5, M141–M147 (2016). https://doi.org/10.1149/2.0061612jss

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Sanjay, acknowledges financial support in the form of SRF from the University Grants Commission (UGC), New Delhi, India.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The work has been performed in a collaborative manner with the authors collectively conceptualising the idea of the work including the structure of the device. Dr. Sanjay, who specialises in simulation on Silvaco, performed the setup of the devices on the simulator and ran the simulations. Dr. Vibhor Kumar along with Dr. Sanjay created the various viewgrams and the results in the present form. The work was mainly done in the laboratory of Dr. Anil Vohra, who brought out the novelty of the work that helped to complete the article in its present form.

Corresponding author

Correspondence to Sanjay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay, Kumar, V. & Vohra, A. Triple-metal gate work function engineering to improve the performance of junctionless cylindrical gate-all-around Si nanowire MOSFETs for the upcoming sub-3-nm technology node. J Comput Electron 23, 267–278 (2024). https://doi.org/10.1007/s10825-024-02148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-024-02148-7

Keywords

Navigation