Skip to main content
Log in

Noise Distortion Analysis of the Designed Heterodielectric Dual-Material Gate Dopingless Nanowire FET

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dopingless nanowire (NW) field-effect transistor (FET) has been discovered as a remedy to low drive current problems of junctionless NWFET. To complete the state-of-the-art devices, an improved technique is needed for enhancing the performance of dopingless NWFET. One such structure with improved characteristics of dopingless NWFET is proposed in this paper and termed a dual-material heterodielectric dopingless NWFET (DM-HDNWFET). We demonstrate the performance improvement of the proposed DM-HDNWFET by comparing its results with those of conventional dual-material gate NWFET. Performance improvements, in terms of drive current, transconductance, and transconductance gain factor, are observed for the proposed structure. By incorporating dual-material at the gate and heterodielectric as oxide, this structure paves the way for further enhancing the capabilities of conventional dopingless configurations. The optimization of the proposed structure is also carried out in this study along with in-depth noise analysis. The noise analysis for the proposed structure is carried out by studying parameters like the noise figure (NF), real impedance (Z0), auto-correlation function (ACF), and cross-correlation function, and evaluating their behavior towards variation in the lengths of the high-k dielectric, gate 1, and gate 2. The noise analysis shows the capability of this structure to be used efficiently in communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Lu, P. Xie, and C.M. Lieber, IEEE Trans. Electron Devices 55, 2859–2876 (2008).

    Article  CAS  Google Scholar 

  2. S. Cho, K.R. Kim, B.G. Park, and I.M. Kang, IEEE Trans. Electron Devices 58, 1388–1396 (2011).

    Article  Google Scholar 

  3. M. Kumar, S. Haldar, M. Gupta, and R.S. Gupta, Microelectron. J. 45, 1508–1514 (2014).

    Article  CAS  Google Scholar 

  4. S.K. Sharma, B. Raj, and M. Khosla, Microelectron. J. 53, 65–72 (2016).

    Article  Google Scholar 

  5. B. Liu, C. Zhan, Y. Yang, R. Cheng, P. Guo, Q. Zhou, E.Y.J. Kong, N. Daval, C. Veytizou, D. Delprat, and B.Y. Nguyen, IEEE Trans. Electron Devices 60, 2135–2141 (2013).

    Article  CAS  Google Scholar 

  6. C.H. Shih, J.T. Liang, J.S. Wang, and N.D. Chien, IEEE Electron Device Lett. 32, 1331–1333 (2011).

    Article  CAS  Google Scholar 

  7. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. Oneill, A. Blake, M. White, and A.M. Kelleher, Nat. Nanotechnol. 5, 225–229 (2010).

    Article  CAS  Google Scholar 

  8. C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, Appl. Phys. Lett. 94, 053511 (2009).

    Article  Google Scholar 

  9. C.W. Lee, A.N. Nazarov, I. Ferain, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, R.T. Doria, and J.P. Colinge, Appl. Phys. Lett. 96(10), 102106 (2010).

    Article  Google Scholar 

  10. C.W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, and J.P. Colinge, Solid State Electron. 54, 97–103 (2010).

    Article  Google Scholar 

  11. R.J.E. Hueting, B. Rajasekharan, C. Salm, and J. Schmitz, IEEE Electron Device Lett. 29, 1367–1368 (2008).

    Article  Google Scholar 

  12. S. Singh and A. Raman, IEEE Trans. Electron Devices 65, 3026–3032 (2018).

    Article  CAS  Google Scholar 

  13. P. Razavi and A.A. Orouji, in Proc. 11th Int. Biennial BEC, 83–86 (2008)

  14. W. Long, H. Ou, J.-M. Kuo, and K.K. Chin, IEEE Trans. Electron Devices 46, 865–870 (1999).

    Article  Google Scholar 

  15. P. Kasturi, M. Saxena, M. Gupta, and R.S. Gupta, IEEE Trans. Electron Devices 55, 372–381 (2008).

    Article  CAS  Google Scholar 

  16. H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, and M. Chan, IEEE Trans. Electron Devices 59, 1829–1836 (2012).

    Article  CAS  Google Scholar 

  17. M.J. Kumar and A. Chaudhry, IEEE Trans. Electron Devices 51, 569–574 (2004).

    Article  CAS  Google Scholar 

  18. S. Chakraborty, A. Mallik, and C.K. Sarkar, IEEE Trans. Electron Devices 55, 827–832 (2008).

    Article  CAS  Google Scholar 

  19. W. Long, H. Ou, J-M. Kuo, and K.K. Chin, IEEE Trans. Electron Devices 46(5), 865–870 (1999).

    Article  Google Scholar 

  20. S. Gundapaneni, S. Ganguly, and A. Kottantharayil, IEEE Electron Device Lett. 32, 1325–1327 (2011).

    Article  CAS  Google Scholar 

  21. R.K. Baruah and R.P. Paily, IEEE Trans. Electron Devices 61, 123–128 (2013).

    Article  Google Scholar 

  22. F. Li, S.P. Mudanai, Y.Y. Fan, L.F. Register, and S.K. Banerjee, IEEE Trans. Electron Devices 53, 1096–1106 (2006).

    Article  CAS  Google Scholar 

  23. B. Cheng, M. Cao, R. Rao, A. Inani, P.V. Voorde, W.M. Greene, J.M. Stork, Z. Yu, P.M. Zeitzoff, and J.C. Woo, IEEE Trans. Electron Devices 46, 1537–1544 (1999).

    Article  CAS  Google Scholar 

  24. J.M. Hwang and G. Pollack, in IEDM Tech. Dig., 345(1999)

  25. S.A. Campbell, D.C. Gilmer, X.C. Wang, M.T. Hsieh, H.S. Kim, W.L. Gladfelter, and J. Yan, IEEE Trans. Electron Devices 44, 104 (1997).

    Article  CAS  Google Scholar 

  26. E.M. Vogel, K.Z. Ahmed, B. Hornung, W.K. Henson, P.K. McLarty, G. Lucovsky, J.R. Hauser, and J. Wortman, IEEE Trans. Electron Devices 45, 1350 (1998).

    Article  CAS  Google Scholar 

  27. Q. Lu, D. Park, A. Kalnitsky, C. Chang, C.C. Cheng, S.P. Tay, and C. Hu, IEEE Electron Device Lett. 19(9), 341–342 (1998).

    Article  CAS  Google Scholar 

  28. C. Sahu and J. Singh, IEEE Electron Device Lett. 35, 411–413 (2014).

    Article  CAS  Google Scholar 

  29. S. Singh and A. Raman, J. Comput. Electron. 17, 967–976 (2018).

    Article  Google Scholar 

  30. N. Kumar and A. Raman, IEEE Trans. Electron Devices 66, 4453–4460 (2019).

    Article  CAS  Google Scholar 

  31. S. Singh and A. Raman, ECS Journal of Solid State Science and Technology 10, 021003 (2021).

    Article  CAS  Google Scholar 

  32. N. Trivedi, M. Kumar, S. Haldar, S.S. Deswal, M. Gupta, and R.S. Gupta, Appl. Phys. A Solids Surf. 123, 564 (2017).

    Article  Google Scholar 

  33. M.J. Kumar and K. Nadda, IEEE Trans. Electron Devices 59, 962–967 (2012).

    Article  CAS  Google Scholar 

  34. M.J. Kumar and S. Janardhanan, IEEE Trans. Electron Devices 60, 3285–3290 (2013).

    Article  CAS  Google Scholar 

  35. S. Anand, S.I. Amin, and R.K. Sarin, J. Comput. Electron. 15, 94–103 (2016).

    Article  Google Scholar 

  36. ATLASDevice Simulation Software, Silvaco Int., Santa Clara, CA, USA, (2018)

  37. N.K. Singh, A. Raman, S. Singh, and N. Kumar, Superlattices Microstruct. 111, 518–528 (2017).

    Article  CAS  Google Scholar 

  38. S.I. Amin and R.K. Sarin, Appl. Phys. A Solids Surf. 122, 380 (2016).

    Article  Google Scholar 

  39. R. Wang, J. Zhuge, R. Huang, T. Yu, J. Zou, D.W. Kim, and Y. Wang, IEEE Trans. Electron Devices 58, 2317–2325 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarabdeep Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Raman, A., Kakkar, D. et al. Noise Distortion Analysis of the Designed Heterodielectric Dual-Material Gate Dopingless Nanowire FET. J. Electron. Mater. 52, 3253–3263 (2023). https://doi.org/10.1007/s11664-023-10288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10288-y

Keywords

Navigation