Skip to main content
Log in

The analog/RF performance of a strained-Si graded-channel dual-material double-gate MOSFET with interface charges

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The analog/radiofrequency (RF) performance of a strained-silicon (s-Si) graded-channel dual-material double gate (GC-DMDG) metal–oxide–semiconductor field-effect transistor (MOSFET) with interface charges is investigated by using Sentaurus technology computer-aided design (TCAD) software. The analog/RF figures of merit of the proposed s-Si GC-DMDG MOSFET, including the intrinsic voltage gain, transconductance generation factor, early voltage, unity-current gain frequency (\(f_{\rm t}\)), transconductance–frequency product (TFP), gain–frequency product (GFP), and gain–transconductance–frequency product (GTFP), are evaluated for different values of device parameters such as the strain in the silicon, the interface charge density, and the thicknesses of the oxide and substrate layers. The simulation results exhibit that the proposed s-Si GC-DMDG MOSFET device attains lower values of transconductance and output conductance and a higher value of early voltage compared with the s-Si graded-channel double-gate (GC-DG) MOSFET. Besides, the proposed s-Si GC-DMDG MOSFET device provides better performance in terms of \(f_{\rm t}\), TFP, GFP, and GTFP in comparison with the s-Si GC-DG MOSFET in the strong inversion region, and vice versa in the subthreshold region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z., Mcintyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., El-Mansy, Y.: A logic nanotechnology featuring strained-silicon. IEEE Electron Device Lett. 25(4), 191–193 (2004)

    Article  Google Scholar 

  2. Jurczak, M., Skotnicki, T., Ricci, G., Campidelli, Y., Hernandez, C., Bensahel, D.: Study on enhanced performance in NMOSFETs on strained silicon. In: 29th European Solid-State Device Research Conference, vol. 1, pp. 304–307 (1999)

  3. Sanuki, T., Oishi, A., Morimasa, Y., Aota, S., Kinoshita, T., Hasumi, R., Takegawa, Y., Isobe, K., Yoshimura, H., Iwai, M., Sunouchi, K., Noguchi, T.: Scalability of strained silicon CMOSFET and high drive current enhancement in the 40 nm gate length technology. In: IEEE International Electron Devices Meeting 2003, pp. 3.5.1–3.5.4 (2003)

  4. Keith, S., Bufler, F.M., Meinerzhagen, B.: Full band Monte-Carlo device simulation of an 0.1 um N-channel MOSFET in strained silicon material. In: 27th European Solid-State Device Research Conference, pp. 200–203 (1997)

  5. Nguyen, C., Pham, A., Jungemann, C., Meinerzhagen, B.: Study of charge carrier quantization in strained Si-nMOSFETs. Mater. Sci. Semicond. Process. 8(1), 363–366 (2005)

    Article  Google Scholar 

  6. Ko, C.H., Ge, C.H., Huang, C.C., Fu, C.Y., Hsu, C.P., Chen, C.H., Chang, C.H., Lu, J.C., Yeo Y.C., Lee, W.C., Chi, M.H.: A novel process-induced strained silicon (PSS) CMOS technology for high-performance applications. In: IEEE VLSI-TSA International Symposium on VLSI Technology, 2005 (VLSI-TSA-Tech), pp. 25–26 (2005)

  7. Rim, K., Chan, K., Shi, L., Boyd, D., Ott, J., Klymko, N., Cardone, F., Tai, L., Koester, S., Cobb, M., Canaperi, D., To, B., Duch, E., Babich, I., Carruthers, R., Saunders, P., Walker, G., Zhang, Y., Steen, M., Ieong, M.: Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. In: IEEE International Electron Devices Meeting 2003, pp. 3.1.1–3.1.4 (2003)

  8. Langdo, T., Currie, M.T., Lochtefeld, A., Hammond, R., Carlin, J., Erdtmann, M., Braithwaite, G., Yang, V.K., Vineis, C., Badawi, H., Bulsara, M.: SiGe-free strained Si on insulator by wafer bonding and layer transfer. Appl. Phys. Lett. 82, 4256–4258 (2003)

    Article  Google Scholar 

  9. Drake, T.S., Chléirigh, C.N., Lee, M.L., Pitera, A.J., Fitzgerald, E.A., Antoniadis, D.A., Anjum, D.H., Li, J., Hull, R., Klymko, N., Hoyt, J.L.: Fabrication of ultra-thin strained silicon on insulator. J. Electron. Mater. 32(9), 972–975 (2003)

    Article  Google Scholar 

  10. Abdi, M.A., Djeffal, F., Arar, D., Hafiane, M.L.: Numerical analysis of double gate and gate all around MOSFETs with bulk trap states. J. Mater. Sci. Mater. Electron. 19(1), 248–253 (2008)

    Article  Google Scholar 

  11. Ioannidis, E.G., Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Ghibaudo, G., Jomaah, J.: Effect of localized interface charge on the threshold voltage of short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 58(2), 433–440 (2011)

    Article  Google Scholar 

  12. Ghoggali, Z., Djeffal, F.: Analytical analysis of nanoscale fully depleted Double-Gate MOSFETs including the hot-carrier degradation effects. Int. J. Electron. 97(2), 119–127 (2010)

    Article  Google Scholar 

  13. Kumar, V., Jay, H., Haldar, S., Gupta, R.S., Gupta, M.: Modeling and simulation of cylindrical surrounding double-gate (CSDG) MOSFET with vacuum gate dielectric for improved hot-carrier reliability and RF performance. J. Comput. Electron. 15(2), 657–665 (2016)

    Article  Google Scholar 

  14. Saramekala, G.K., Dubey, S., Tiwari, P.K.: Analog and radio-frequency (RF) performance evaluation of fully-depleted (FD) recessed-source/drain (Re-S/D) SOI MOSFETs. Superlattices Microstruct. 76, 77–89 (2014)

    Article  Google Scholar 

  15. Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)

    Article  Google Scholar 

  16. Sharma, R.K., Bucher, M.: Device design engineering for optimum analog/RF performance of nanoscale DG MOSFETs. IEEE Trans. Nanotechnol. 11(5), 992–998 (2012)

    Article  Google Scholar 

  17. Swain, S.K., Dutta, A., Adak, S., Pati, S.K., Sarkar, C.K.: Influence of channel length and high-K oxide thickness on subthreshold analog/RF performance of graded channel and gate stack DG-MOSFETs. Microelectron. Reliab. 61, 24–29 (2016)

    Article  Google Scholar 

  18. Chen, Y., Mohamed, M., Jo, M., Ravaioli, U., Ruimin, X.: Junctionless MOSFETs with laterally graded-doping channel for analog/RF applications. J. Comput. Electron. 12(4), 757–764 (2013)

    Article  Google Scholar 

  19. Kaundal, S., Rana, A.K.: Physical insights on scaling of Gaussian channel design junctionless FinFET. J. Nanoelectron. Optoelectron. 13(5), 653–660 (2018)

    Article  Google Scholar 

  20. Sarkar, A., De, S., Dey, A., Sarkar, C.K.: Analog and RF performance investigation of cylindrical surrounding-gate MOSFET with an analytical pseudo-2D model. J. Comput. Electron. 11(2), 182–195 (2012)

    Article  Google Scholar 

  21. Moparthi, S., Adarsh, K., Tiwari, P.K., Saramekala, G.K.: Analog and RF performance evaluation of negative capacitance SOI junctionless transistor. AEU Int. J. Electron. Commun. 122, 153243 (2020)

    Article  Google Scholar 

  22. Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., De Meyer, K., Raynaud, C., Dehan, M., Raskin, J., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans. Electron Devices 50(3), 577–588 (2003)

    Article  Google Scholar 

  23. Pradhan, K.P., Mohapatra, S.K., Sahu, P.K., Behera, D.K.: Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45(2), 144–151 (2014)

    Article  Google Scholar 

  24. Xiang, Q., Goo, J.-S., Pan, J., Yu, B., Ahmed, S., Zhang, J., Lin, M.-R.: Strained silicon NMOS with nickel-silicide metal gate. In: 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), pp. 101–102 (2003)

  25. Suddapalli, S.R., Nistala, B.R.: A center-potential-based threshold voltage model for a graded-channel dual-material double-gate strained-si mosfet with interface charges. J. Comput. Electron. 18(4), 1173–1181 (2019)

    Article  Google Scholar 

  26. Lim, J.-S., Thompson, S.E., Fossum, J.G.: Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett. 25(11), 731–733 (2004)

    Article  Google Scholar 

  27. Zhang, W., Fossum, J.G.: On the threshold voltage of strained-Si-Si1-xGex MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005)

    Article  Google Scholar 

  28. Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53(10), 2500–2506 (2006)

    Article  Google Scholar 

  29. Sentaurus TCAD User manual, Synopsys, Inc., Version Q-2019.12. Mountain View, CA, USA (December, 2019)

  30. Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Device Lett. 14(12), 569–571 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subba Rao Suddapalli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suddapalli, S.R., Nistala, B.R. The analog/RF performance of a strained-Si graded-channel dual-material double-gate MOSFET with interface charges. J Comput Electron 20, 492–502 (2021). https://doi.org/10.1007/s10825-020-01578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01578-3

Keywords

Navigation