Skip to main content
Log in

Dual-Channel Junctionless FETs for Improved Analog/RF Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A dual-channel single gate junctionless FET (DCJLT) is investigated to improve the analog/RF performance. The gate of proposed structure is placed in a vertical trench and two channels are taken on both sides of the gate. The proposed device is studied with moderate and heavily doped drain concentrations which are named as MDD-DCJLT and HDD-DCJLT, respectively. The performance parameters of both devices are evaluated and compared in terms of drain current (IDS), transconductance (gm), transconductance generation efficiency (gm/IDS), unity-gain cut-off frequency (fT) and maximum oscillation frequency (fmax) using 2D numerical simulations in a TCAD tool (ATLAS). The proposed HDD-DCJLT is demonstrated to offer peak gm, fT and fmax of 2304 μS/μm, 548 GHz and 830 GHz, respectively at gate length of 20 nm. Thus, the proposed structure is a suitable choice for analog/RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor. Appl Phys Lett 94(5):053511

    Article  Google Scholar 

  2. Lee C-W, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge J-P (2010) Performance estimation of junctionless multigate transistors. Solid-State Electronics 54(2):97–103. 02

    Article  Google Scholar 

  3. Colinge J-P, Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher A-M, Mccarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5:225–229. 02

    Article  CAS  Google Scholar 

  4. Colinge J-P, Kranti A, Yan R, Lee C-W, Ferain I, Yu R, Akhavan ND, Razavi P (2011) Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid-State Electronics 65-66:33–37. 11

    Article  CAS  Google Scholar 

  5. Doria RT, Pavanello MA, Trevisoli RD, de Souza M, Lee C, Ferain I, Akhavan ND, Yan R, Razavi P, Yu R, Kranti A, Colinge J (2011) Junctionless multiple-gate transistors for analog applications. IEEE Trans Electron Devices 58(8):2511–2519. 08

    Article  CAS  Google Scholar 

  6. Colinge JP, Lee CW, Dehdashti Akhavan N, Yan R, Ferain I, Razavi P, Kranti A, Yu R (2011) Junctionless Transistors: Physics and Properties. pp 187–200

  7. Sahay S, Kumar MJ (2019) Junctionless Field-Effect Transistors: Design, Modeling and Simulation Shubham Sahay and Mamidala Jagadesh Kumar. 02

  8. Cho S, Kim KR, Park B, Kang IM (2011) Rf performance and small-signal parameter extraction of junctionless silicon nanowire mosfets. IEEE Trans Electron Devices 58(5):1388–1396

    Article  Google Scholar 

  9. Kim TK, Kim DH, Yoon YG, Moon JM, Hwang BW, Moon D, Lee GS, Lee DW, Yoo DE, Hwang HC, Kim JS, Choi Y, Cho BJ, Lee S (2013) First demonstration of junctionless accumulation-mode bulk FinFETs with robust junction isolation. IEEE Electron Device Letters 34(12):1479–1481

    Article  CAS  Google Scholar 

  10. Jin X, Xi L, Wu M, Chuai R, Lee J-H, Lee J-H (2013) A unified analytical continuous current model applicable to accumulation mode (junctionless) and inversion mode MOSFETs with symmetric and asymmetric double-gate structures. Solid State Electron 79:206–209

    Article  Google Scholar 

  11. Holtij T, Graef M, Hain FM, Kloes A, Iñíguez B (2014) Compact model for short-channel junctionless accumulation mode double gate mosfets. IEEE Trans Electron Devices 61(2):288–299

    Article  Google Scholar 

  12. Chebaki E, Djeffal F, Ferhati H, Bentrcia T (2016) Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattice Microst 92:80–91

    Article  CAS  Google Scholar 

  13. Bansal AK, Kumar M, Gupta C, Hook TB, Dixit A (2018) Series resistance reduction with linearity assessment for vertically stacked junctionless accumulation mode nanowire FET. IEEE Trans Electron Devices 65 (8):3548–3554

    Article  CAS  Google Scholar 

  14. Rios R, Cappellani A, Armstrong M, Budrevich A, Gomez H, Pai R, Rahhal-orabi N, Kuhn K (2011) Comparison of junctionless and conventional trigate transistors with lg, down to 26 nm. IEEE Electron Device Letters 32(9):1170–1172

    Article  Google Scholar 

  15. Holtij T, Schwarz M, Kloes A, Iniguez B (2013) Threshold voltage and 2D potential modeling within short-channel junctionless DG MOSFETs in subthreshold region. Solid-State Electronics 90:107–115. 03

    Article  CAS  Google Scholar 

  16. Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S (2016) Analytical modeling of channel potential and threshold voltage of double-gate junctionless FETs with a vertical Gaussian-like doping profile. IEEE Trans Electron Devices 63(6):2299–2305

    Article  CAS  Google Scholar 

  17. Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S (2017) 12-D analytical threshold voltage model for dielectric pocket double-gate junctionless FETs by considering source/drain depletion effect. IEEE Trans Electron Devices 64(3):901–908. 3

    Article  CAS  Google Scholar 

  18. Larki F, Dehzangi A, Islam MS, Ali SH, Abedini A, Majlis BY (2018) Effect of channel width variation on electrical characteristics of double lateral gate junctionless transistors A numerical study. Silicon 10:1305–1314

    Article  CAS  Google Scholar 

  19. Singh B, Gola D, Goel E, Kumar S, Singh K, Jit S (2016) Dielectric pocket double gate junctionless FET: a new MOS structure with improved subthreshold characteristics for low power VLSI applications. J Comput Electron 15:502–507. 02

    Article  CAS  Google Scholar 

  20. Jaiswal N, Kranti A (2018) A model for gate-underlap-dependent short-channel effects in junctionless MOSFET. IEEE Trans Electron Devices 65(3):881–887

    Article  CAS  Google Scholar 

  21. Manikandan S, Balamurugan NB, Nirmal D (2019) Analytical model of double gate stacked oxide junctionless transistor considering source/drain depletion effects for CMOS low power applications. Silicon

  22. Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S (2017) Analytical modeling of subthreshold characteristics of ion-implanted symmetric double gate junctionless field effect transistors. Materials Science in Semiconductor Processing 58:82–88. 02

    Article  CAS  Google Scholar 

  23. Bavir M, Abbasi A, Orouji AA (2019) A simulation study of junctionless double-gate metal-oxide-semiconductor field-effect transistor with symmetrical side gates. Silicon

  24. Darwin S, Arun Samuel TS (2020) A holistic approach on junctionless dual material double gate (DMDG) MOSFET with high k gate stack for low power digital applications. Silicon 12:393–403

    Article  CAS  Google Scholar 

  25. Gola D, Singh B, Singh J, Jit S, Tiwari PK (2019) Static and quasi-static drain current modeling of tri-gate junctionless transistor with substrate bias-induced effects. IEEE Trans Electron Devices 66(7):2876–2883

    Article  CAS  Google Scholar 

  26. Ghosh D, Kranti A (2015) Impact of channel doping and spacer architecture on analog/RF performance of low power junctionless MOSFETs. Semicond Sci Technol, 30

  27. Garike R, Patil GC (2019) Si3 N4:HfO2 dual-k spacer bulk planar junctionless transistor for mixed signal integrated circuits, vol 13

  28. Ghosh D, Parihar MS, Armstrong GA, Kranti A (2012) High-performance junctionless MOSFETs for ultralow-power analog/RF, applications. IEEE Electron Device Letters 33(10):1477–1479

    Article  CAS  Google Scholar 

  29. Sirohi A, Sahu C, Singh J (2019) Analog/RF performance investigation of dopingless FET for ultra-low power applications. IEEE Access 7:141810–141816

    Article  Google Scholar 

  30. Baruah RK, Paily RP (2014) A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance. IEEE Trans Electron Devices 61(1):123–128. 01

    Article  CAS  Google Scholar 

  31. Gola D, Singh B, Tiwari PK (2019) Analytical modeling of analog/RF parameters for trigate junctionless field effect transistor incorporating substrate biasing effects. In: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp 1838– 1841

  32. Garg A, Singh B, Singh Y (2020) A new trench double gate junctionless FET: A device for switching and analog/RF applications. AEU - International Journal of Electronics and Communications 118:153140

    Article  Google Scholar 

  33. Parihar MS, Kranti A (2014) Revisiting the doping requirement for low power junctionless MOSFETs. Semiconductor Science and Technology 29(7):075006

    Article  CAS  Google Scholar 

  34. ATLAS Device Simulator Software Silvaco Santa clara (2015)

  35. Kumar A, Swami Y, Rai S (2020) Modeling of surface potential and fringe capacitance of selective buried oxide junctionless transistor. Silicon

  36. Adhikari MS, Singh Y (2017) High performance multi-finger MOSFET on SOI for RF amplifiers. Indian J Phys 91:1211–1217

    Article  CAS  Google Scholar 

  37. Sarkar A, Das AK, De S, Sarkar CK (2012) Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron J 43(11):873–882

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A., Singh, Y. & Singh, B. Dual-Channel Junctionless FETs for Improved Analog/RF Performance. Silicon 13, 1499–1507 (2021). https://doi.org/10.1007/s12633-020-00545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00545-8

Keywords

Navigation