Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–18. doi:10.1016/j.plantsci.2011.02.004
CAS
Article
PubMed
Google Scholar
Andriotis VM, Pike MJ, Kular B, Rawsthorne S, Smith AM (2010) Starch turnover in developing oilseed embryos. New Phytol 187:791–804. doi:10.1111/j.1469-8137.2010.03311.x
CAS
Article
PubMed
Google Scholar
Baerenfaller K, Massonnet C, Walsh S, Baginsky S, Bühlmann P, Hennig L, Hirsch-Hoffmann M, Howell KA, Kahlau S, Radziejwoski A, Russenberger D, Rutishauser D, Small I, Stekhoven D, Sulpice R, Svozil J, Wuyts N, Stitt M, Hilson P, Granier C, Gruissem W (2012) Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol. doi:10.1038/msb.2012.39
PubMed
PubMed Central
Google Scholar
Berberich T, Sugawara K, Harada M, Kusano T (1995) Molecular cloning, characterization and expression of an elongation factor 1 alpha gene in maize. Plant Mol Biol 29:611–615
CAS
Article
PubMed
Google Scholar
Binarova P, Straatman K, Hause B, Hause G, Van Lammeren AA (1993) Nuclear DNA synthesis during the induction of embryogenesis in cultured microspores and pollen of Brassica napus L. Theor Appl Genet 87:9–16. doi:10.1007/bf00223736
CAS
Article
PubMed
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
CAS
Article
PubMed
Google Scholar
Bustos DM, Bustamante CA, Iglesias AA (2008) Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. J Plant Physiol 165:456–461. doi:10.1016/j.jplph.2007.06.005
CAS
Article
PubMed
Google Scholar
Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 88:715–730
Google Scholar
Cordewener J, Van Der Wal F, Joosen R, Boutilier K, America T (2009) Proteomics in rapeseed microspore embryogenesis. In: Touraev A, Forster B, Jain SM (eds) Advances in haploid production in higher plants. Springer, Netherlands, pp 135–146
Chapter
Google Scholar
Crouch M (1982) Non-zygotic embryos of Brassica napus L. contain embryo-specific storage proteins. Planta 156:520–524. doi:10.1007/BF00392774
CAS
Article
PubMed
Google Scholar
D’aloisio E, Paolacci AR, Dhanapal AP, Tanzarella OA, Porceddu E, Ciaffi M (2010) the protein disulfide isomerase gene family in bread wheat (T. aestivum L.). BMC Plant Biol 10:101. doi:10.1186/1471-2229-10-101
Article
PubMed
PubMed Central
Google Scholar
De Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97
Article
PubMed
Google Scholar
Dubas E, Wędzony M, Petrovska B, Salaj J, Żur I (2010) Cell structural reorganization during induction of androgenesis in isolated microspore cultures of triticale (×Triticosecale Wittm.). Acta Biol Crac Ser Bot 52(1):73–86. doi:10.1007/s00299-009-0730-2
Google Scholar
Dunn MA, Morris A, Jack PL, Hughes MA (1993) A low-temperature-responsive translation elongation factor 1 alpha from barley (Hordeum vulgare L.). Plant Mol Biol 23:221–225
CAS
Article
PubMed
Google Scholar
Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424. doi:10.1111/j.1467-7652.2009.00498.x
CAS
Article
PubMed
Google Scholar
Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6x triticale cultivars. Plant Cell Tiss Organ Cult 82:233–241
CAS
Article
Google Scholar
Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228
Article
Google Scholar
Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375. doi:10.1016/j.tplants.2007.06.007
CAS
Article
PubMed
Google Scholar
Fu J, Momčilović I, Prasad PVV (2012) Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. J Bot 2012:1–8. doi:10.1155/2012/835836
Article
Google Scholar
Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J, Kang HM, Furlotte N, Park CC, Wen P-Z, Brewer H, Weitz K, Camp DG, Pan C, Yordanova R, Neuhaus I, Tilford C, Siemers N, Gargalovic P, Eskin E, Kirchgessner T, Smith DJ, Smith RD, Lusis AJ (2011) Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet 7:e1001393. doi:10.1371/journal.pgen.1001393
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzalez JM, Muniz LM, Jouve N (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of ×Triticosecale Wittmack. Genome 48:999–1009. doi:10.1139/g05-064
CAS
Article
PubMed
Google Scholar
Grosset J, Marty I, Chartier Y, Meyer Y (1990) mRNAs newly synthesized by tobacco mesophyll protoplasts are wound-inducible. Plant Mol Biol 15:485–496
CAS
Article
PubMed
Google Scholar
Hosp J, De Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285. doi:10.1007/s10681-006-9238-9
Article
Google Scholar
Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W (2012) Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS ONE 7:e49500. doi:10.1371/journal.pone.0049500
CAS
Article
PubMed
PubMed Central
Google Scholar
Imin N, De Jong F, Mathesius U, Van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896. doi:10.1002/pmic.200300803
CAS
Article
PubMed
Google Scholar
Immonen S, Robinson J (2000) Stress treatments and ficoll for improving green plant regeneration in triticale anther culture. Plant Sci 150:77–84. doi:10.1016/S0168-9452(99)00169-7
CAS
Article
Google Scholar
Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clément C (2009) Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229:393–402. doi:10.1007/s00425-008-0838-6
CAS
Article
PubMed
Google Scholar
Joosen R, Cordewener J, Supena ED, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:155–172. doi:10.1104/pp.107.098723
CAS
Article
PubMed
PubMed Central
Google Scholar
Jung KH, Park J-W (2011) Suppression of mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances curcumin-induced apoptosis in HCT116 cells. Free Radical Res 45:431–438. doi:10.3109/10715762.2010.540574
CAS
Article
Google Scholar
Kim SH, Kim SH, Palaniyandi SA, Yang SH, Suh JW (2015) Expression of potato S-adenosyl-l-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Plant Physiol Biochem 87:84–91. doi:10.1016/j.plaphy.2014.12.020
CAS
Article
PubMed
Google Scholar
Klubicova K, Danchenko M, Skultety L, Berezhna VV, Hricova A, Rashydov NM, Hajduch M (2011) Agricultural recovery of a formerly radioactive area: II. Systematic proteomic characterization of flax seed development in the remediated Chernobyl area. J Proteomics 74:1378–1384. doi:10.1016/j.jprot.2011.02.029
CAS
Article
PubMed
Google Scholar
Krzewska M, Czyczylo-Mysza I, Dubas E, Golebiowska-Pikania G, Golemiec E, Stojalowski S, Chrupek M, Zur I (2012) Quantitative trait loci associated with androgenic responsiveness in triticale (×Triticosecale Wittm.) anther culture. Plant Cell Rep 31:2099–2108. doi:10.1007/s00299-012-1320-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3—a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol. doi:10.2225/vol12-issue2-fulltext-1
Google Scholar
Lantos C, Bona L, Boda K, Pauk J (2014) Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (×Triticosecale Wittmack) for androgenic parameters. Euphytica 197:27–37. doi:10.1007/s10681-013-1031-y
CAS
Article
Google Scholar
Lichter R (1985) From microspores to rape plants: a tentative way to low glucosinolate strains. In: Sorensen H (ed) Cruciferous crops: production, utilization, description, vol II. Nijhoff/Junk, Boston, pp 268–277
Google Scholar
Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473. doi:10.1002/pmic.200400986
CAS
Article
PubMed
Google Scholar
Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236. doi:10.1016/j.tplants.2009.01.007
CAS
Article
PubMed
Google Scholar
Maraschin SF, De Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726. doi:10.1093/jxb/eri190
CAS
Article
PubMed
Google Scholar
Maraschin SDF, Caspers M, Potokina E, Wulfert F, Graner A, Spaink HP, Wang M (2006) cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127:535–550. doi:10.1111/j.1399-3054.2006.00673.x
CAS
Article
Google Scholar
Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. doi:10.1007/s00018-004-4464-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
CAS
Article
PubMed
Google Scholar
Muñoz-Amatriaín M, Svensson JT, Castillo AM, Cistué L, Close TJ, Vallés MP (2009) Expression profiles in barley microspore embryogenesis. In: Touraev A, Jain SM, Forster BP (eds) Advances in haploid production in higher plants. Springer, New york, pp 127–134
Chapter
Google Scholar
Olarewaju O, Ortiz PA, Chowdhury WQ, Chatterjee I, Kinzy TG (2004) The translation elongation factor eEF1B plays a role in the oxidative stress response pathway. RNA Biol 1:89–94
CAS
Article
PubMed
Google Scholar
Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289. doi:10.1007/s00299-008-0633-7
Article
PubMed
Google Scholar
Pauk J, Mihály R, Monostori T, Puolimatka M (2003) Protocol of triticale (×Triticosecale Wittmack) microspore culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Netherlands, pp 129–134
Chapter
Google Scholar
Pauls KP, Chan J, Woronuk G, Schulze D, Brazolot J (2006) When microspores decide to become embryos—cellular and molecular changes. This review is one of a selection of papers published in the Special Issue on Plant Cell Biology. Can J Bot 84:668–678. doi:10.1139/b06-064
CAS
Article
Google Scholar
Pechan PM, Barteis D, Brown DCW, Schell J (1991) Messenger-RNA and protein changes associated with induction of Brassica microspore embryogenesis. Planta 184:161–165
CAS
Article
PubMed
Google Scholar
Reynolds TL, Crawford RL (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Mol Biol 32:823–829
CAS
Article
PubMed
Google Scholar
Sánchez-Díaz RA, Castillo AM, Vallés MP (2013) Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development. Plant Reproduction 26:287–296. doi:10.1007/s00497-013-0225-8
Article
PubMed
Google Scholar
Segui-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12. doi:10.1111/j.1399-3054.2008.01113.x
CAS
Article
PubMed
Google Scholar
Seguí-Simarro JM, Testillano PS, Risueño MC (2003) Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J Struct Biol 142:379–391. doi:10.1016/s1047-8477(03)00067-4
Article
PubMed
Google Scholar
Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858
CAS
Article
PubMed
Google Scholar
Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196. doi:10.1007/s00497-013-0226-7
Article
PubMed
PubMed Central
Google Scholar
Testillano PS, Coronado MJ, Segui JM, Domenech J, Gonzalez-Melendi P, Raska I, Risueno MC (2000) Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J Struct Biol 129:223–232. doi:10.1006/jsbi.2000.4249
CAS
Article
PubMed
Google Scholar
Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:285–303
Article
Google Scholar
Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. In: Advances in botanical research. Academic Press, Cambridge, pp 53–109
Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652. doi:10.1007/s00425-006-0388-8
CAS
Article
PubMed
Google Scholar
Tyrka M, Bednarek PT, Kilian A, Wędzony M, Hura T, Bauer E (2011) Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 401:391–401. doi:10.1139/G11-009
Article
Google Scholar
Uváčková Ľ, Takáč T, Boehm N, Obert B, Šamaj J (2012) Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J Proteom 75:1886–1894. doi:10.1016/j.jprot.2011.12.033
Article
Google Scholar
Van De Poel B, Bulens I, Oppermann Y, Hertog ML, Nicolai BM, Sauter M, Geeraerd AH (2013) S-adenosyl-l-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiol Plant 148:176–188. doi:10.1111/j.1399-3054.2012.01703.x
Article
PubMed
Google Scholar
Van Der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagua M (1991) Plant enolase: gene structure, expression, and evolution. Plant Cell 3:719–735
Article
PubMed
PubMed Central
Google Scholar
Vergne P, Riccardi F, Beckert M, Dumas C (1993) Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea mays L. Theor Appl Genet 86:843–850
CAS
Article
PubMed
Google Scholar
Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare L.). Plant Mol Biol 41:455–463
CAS
Article
PubMed
Google Scholar
Wang P, Chen Y (1983) Preliminary study on prediction of height of pollen H2 generation in winter wheat grown in the field. Acta Agron Sin 9:283–284
Google Scholar
Wang C-C, Tsou C-L (1993) Protein disuffide isomerase is both an enzyme and a chaperone. FASEB J. 7:1515–1517
CAS
PubMed
Google Scholar
Wędzony M (2003) Protocol for doubled haploid production in hexaploid triticale (×Triticosecale Wittm.) by crosses with maize. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, New York, pp 135–140
Chapter
Google Scholar
Wędzony M, Marcińska I, Ponitka A, Ślusarkiewicz-Jarzina A, Woźna J (1998) Production of doubled haploids in triticale (×Triticosecale Wittm.) by means of crosses with maize (Zea mays L.) using picloram and dicamba. Plant Breed. 117:211–215. doi:10.1111/j.1439-0523.1998.tb01928.x
Article
Google Scholar
Wędzony M, Żur I, Krzewska M, Dubas E, Szechyńska-Hebda M, Wąsek I (2015) Doubled haploids in triticale. In: Eudes F (ed) triticale. Springer, New York, pp 111–128
Chapter
Google Scholar
Yu J, Lee G, Park Y (2012) Physiological role of endogenous S-adenosyl-L-methionine synthetase in Chinese cabbage. Hortic Environ Biotechnol 53:247–255. doi:10.1007/s13580-012-0021-7
Zhang LY, Xu J (1983) Increasing differentiation frequencies in wheat pollen callus. In: Hu H, Vega MR (eds) Cell and tissue culture techniques for cereal crop improvement. Science Press, Beijing, pp 431–432
Google Scholar
Zhang J, Ma H, Chen S, Ji M, Perl A, Kovacs L, Chen S (2009) Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—a proteomic approach. Plant Sci 177:103–113. doi:10.1016/j.plantsci.2009.04.003
CAS
Article
Google Scholar
Zoriniants S, Tashpulatov AS, Heberle-Bors E, Touraev A (2005) The role of stress in the induction of haploid microspore embryogenesis. In: Don Palmer CE, Keller W, Kasha K (eds) Haploids in crop improvement II. Springer, Berlin, pp 35–52
Chapter
Google Scholar
Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Janowiak F, Wędzony M (2008) Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Tissue Organ Cult 94:319–328. doi:10.1007/s11240-008-9360-6
Article
Google Scholar
Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Golębiowska G, Wędzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Rep 28:1279–1287. doi:10.1007/s00299-009-0730-2
Article
PubMed
Google Scholar
Żur I, Krzewska M, Dubas E, Gołębiowska-Pikania G, Janowiak F, Stojałowski S (2012) Molecular mapping of loci associated with abscisic acid accumulation in triticale (×Triticosecale Wittm.) anthers in response to low temperature stress inducing androgenic development. Plant Growth Regul 68:483–492. doi:10.1007/s10725-012-9738-7
Article
Google Scholar
Żur I, Dubas E, Krzewska M, Sánchez-Díaz RA, Castillo AM, Vallés MP (2013) Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (×Triticosecale Wittm.). Plant Cell Tissue Organ Culture (PCTOC) 116:261–267. doi:10.1007/s11240-013-0399-7
Google Scholar
Żur I, Dubas E, Krzewska M, Janowiak F, Hura K, Pociecha E, Bączek-Kwinta R, Płażek A (2014) Antioxidant activity and ROS tolerance in triticale (×Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tissue and Organ Cult (PCTOC) 119:79–94. doi:10.1007/s11240-014-0515-3
Article
Google Scholar
Żur I, Dubas E, Krzewska M, Janowiak F (2015a) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:424. doi:10.3389/fpls.2015.00424
PubMed
PubMed Central
Google Scholar
Żur I, Dubas E, Krzewska M, Waligórski P, Dziurka M, Janowiak F (2015b) Hormonal requirements for effective induction of microspore embryogenesis in triticale (×Triticosecale Wittm.) anther cultures. Plant Cell Rep 34:47–62. doi:10.1007/s00299-014-1686-4
Article
PubMed
Google Scholar