Skip to main content
Log in

Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To understand the mechanism in induction of embryogenesis from microspores of Brassica napus, we isolated exhaustively the genes expressed differentially during the early stage of microspore culture. A subtracted cDNA library composed of up-regulated genes during androgenic initiation was produced by suppression subtractive hybridization followed by differential screening by dot blot hybridization, and a total of 136 non-redundant expressed sequence tags were identified. Analysis of the potential functions of the genes showed that 64% of these genes were homologous to known genes, and the remaining ones have not been previously reported to participate in embryogenesis. Many embryo-specific genes were contained in the isolated genes, for example, genes cording lipid transfer protein, napin, cruciferin, oleosin, and phytosulfokine. Real-time RT-PCR analysis for 15 selected genes, which are understood to not be related with embryogenesis, demonstrated that all genes were expressed highly in the early stage of microspore embryogenesis. A few genes also showed higher expression in microspores cultured in non-embryogenic condition or in later stages of embryos. A principal component analysis based on expression profiles of the 15 genes demonstrated that these genes were classified into 2 groups, one characterized by their high expression in initiation of embryogenesis, and the other characterized by their expression in the early to middle stage of embryogenesis. The expressions of these genes were confirmed in zygotic embryos. The identification and characterization of the genes isolated in the present study provide novel information on microspore embryogenesis in Brassica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAP:

Day-after-pollination

EST:

Expressed sequence tag

LTP:

Lipid transfer protein

PCA:

Principal component analysis

PSK:

Phytosulfokine

SSH:

Suppression subtractive hybridization

References

  • Albani D, Sardana R, Robert LS, Altosaar I, Arnison PG, Fabijanski SF (1992) A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J 2:331–342

    PubMed  CAS  Google Scholar 

  • Arondel V, Vergnolle C, Cantrel C, Kader JC (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157:1–12

    Article  CAS  Google Scholar 

  • Boutilier KA, Gines MJ, DeMoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL (1994) Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211:305–314

    Article  PubMed  CAS  Google Scholar 

  • Cordewener JHG, Busnk R, Traas JA, Custers JBM, Dons HJM, VanLookeren-Campagne MM (1994) Induction of microspore embryogenesis in Brassica napus L. is accompanied by specific changes in protein synthesis. Planta 195:50–56

    Article  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, Dunstan DI (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199:459–466

    Article  PubMed  CAS  Google Scholar 

  • Douliez JP, Michon T, Elmorjani K, Marion D (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32:1–20

    Article  CAS  Google Scholar 

  • Ellerstrom M, Stalberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Galland R, Randoux B, Vasseur J, Hilbert JL (2001) A glutathione S-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74

    Article  PubMed  CAS  Google Scholar 

  • Fernandez DE, Turner FR, Crouch ML (1991) In situ localization of storage protein mRNAs in developing meristems of Brassica napus embryos. Development 111:299–313

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Tenbarge KM, Shumway JE, Crouch ML (1985) Role of ABA in maturation of rapeseed embryos. Plant Phyisiol 78:630–636

    Article  CAS  Google Scholar 

  • Hanai H, Matsuno T, Yamamoto M, Matsubayashi Y, Kobayashi T, Kamada H, Sakagami Y (2000) A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation. Plant Cell Physiol 41:27–32

    PubMed  CAS  Google Scholar 

  • Hattori J, Boutilier KA, van Lookeren Campagne MM, Miki BL (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259:424–428

    Article  PubMed  CAS  Google Scholar 

  • Hays DB, Wilen RW, Sheng C, Moloney MM, Pharis RP (1999) Embryo-specific gene expression in microspore-derived embryos of Brassica napus. An interaction between abscisic acid and jasmonic acid. Plant Physiol 119:1065–1072

    Article  PubMed  Google Scholar 

  • Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep 8:594–597

    Article  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  PubMed  CAS  Google Scholar 

  • Ilic-Grubor K, Attree SM, Fowke LC (1998) Comparative morphological study of zygotic and microspore-derived embryos of Brassica napus L. as revealed by scanning electron microscopy. Ann Bot 82:157–165

    Article  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Keddie JS, Hubner G, Slocombe SP, Jarvis RP, Cummins I, Edwards EW, Shaw CH, Murphy DJ (1992) Cloning and characterization of an oleosin gene from Brassica napus. Plant Mol Biol 19:443–453

    Article  PubMed  CAS  Google Scholar 

  • Magioli C, Barroco RM, Rocha CAB, Fernandes LDS, Mansur E, Engler G, Margis-Pinheiro M, Martins GS (2001) Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Sci 161:559–567

    Article  CAS  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 23:7623–7627

    Article  Google Scholar 

  • Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-alpha, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci USA 94:13357–13362

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Takahata Y, Kaizuma N (1997) Scanning electron microscopy of microspore embryogenesis in Brassica spp. Plant Cell Rep 16:406–410

    CAS  Google Scholar 

  • Palmer CE, Keller WA (1999) Haploidy. In: Gómez-Campo C (ed) Biology of Brassica coenospecices. Elsevier, Amsterdam pp 247–286

    Google Scholar 

  • Pechan PM, Keller WA (1989) Induction of microspore embryogenesis in Brassica napus L. by gamma irradiation and ethanol stress. In Vitro Cell Devel Biol 25:1073–1074

    CAS  Google Scholar 

  • Pechan PM, Bartels D, Brown DCW, Schell J (1991) Messenger-RNA and protein changes associated with induction of Brassica microspore embryogenesis. Planta 184:161–165

    Article  CAS  Google Scholar 

  • Pullman GS, Namjoshi K, Zhang Y (2003) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95

    Article  PubMed  CAS  Google Scholar 

  • Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S (2000) Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Mol Biol 42:461–478

    Article  PubMed  CAS  Google Scholar 

  • Sjodahl S, Gustavsson HO, Rodin J, Lenman M, Hoglund AS, Rask L (1993) Cruciferin gene families are expressed coordinately but with tissue-specific differences during Brassica napus seed development. Plant Mol Biol 23:1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Slocombe SP, Cummins I, Jarvis RP, Murphy DJ (1992) Nucleotide sequence and temporal regulation of a seed-specific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Mol Biol 20:151–155

    Article  PubMed  CAS  Google Scholar 

  • Sossountzov L, Ruiz-Avila L, Vignols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miginiac E, Delseny M, Puigdomenèch P, Kader JC (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3:923–933

    Article  PubMed  CAS  Google Scholar 

  • Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 4:515–519

    Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    Article  PubMed  CAS  Google Scholar 

  • Takahata Y (1997) Microspore culture. In: Kalia HR, Guputa SK (eds) Recent advances in oilseed brassicas. Kalyani Publishers, Ludhiana, pp 160–181

    Google Scholar 

  • Takahata Y, Keller WA (1991) High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74:235–242

    Article  Google Scholar 

  • Takahata Y, Brown DCW, Keller WA (1991) Effect of donor plant age and inflorescence age on microspore culture of Brassica napus L. Euphytica 58:51–55

    Article  Google Scholar 

  • Telmer CA, Newcomb W, Simmonds DH (1993) Microspore development in Brassica napus and effect of high temperature on division in vivo and in vitro. Protoplasma 172:154–165

    Article  Google Scholar 

  • Toonen MA, Verhees JA, Schmidt ED, van Kammen A, de Vries SC (1997) AtLTP1 luciferase expression during carrot somatic embryogenesis. Plant J 12:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Trevino MB, O’connel MA (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol 116:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare L.). Plant Mol Biol 41:455–463

    Article  PubMed  CAS  Google Scholar 

  • Wakui K, Takahata Y, Kaizuma N (1994) Effect of abscisic acid and high osmoticum concentration on the induction of desiccation tolerance in microspore-derived embryos of Chinese cabbage (Brassica campestris L.). Breed Sci 44:29–34

    CAS  Google Scholar 

  • Zaki MAM, Dickinson HG (1991) Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Repro 4:48–55

    Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv Reston (biological responses in the presence of 8[prime]-hydroxyabscisic acid). Plant Physiol 108:563–571

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Science, Culture and Sports, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Takahata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuwamoto, R., Fukuoka, H. & Takahata, Y. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus . Planta 225, 641–652 (2007). https://doi.org/10.1007/s00425-006-0388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0388-8

Keywords

Navigation