Skip to main content

Advertisement

Log in

Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck)

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Two dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to study the somatic embryogenesis (SE) in Valencia sweet orange (Citrus sinensis Osbeck). Twenty-four differentially expressed proteins were identified at five time points of citrus SE (0, 1, 2, 3, 4 weeks after embryo initiation) covering globular, heart/torpedo and cotyledon-shaped embryo stages. The general expression patterns for these proteins were consistent with those appeared at 4 weeks of citrus SE. The most striking feature of our study was that five proteins were predicted to be involved in glutathione (GSH) metabolism and anti-oxidative stress, and they exhibited different expression patterns during SE. Based on that oxidative stress has been validated to enhance SE, the preferential representation for anti-oxidative proteins suggests that they could have a developmental role in citrus SE. Some proteins involved in cell division, photosynthesis and detoxification were also identified, and their possible roles in citrus SE were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

ACN:

Acetonitril

CBB:

Coomassie brilliant blue

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonic acid

DTT:

dl-Dithiothreitol

EST:

Expressed sequence tag

GSH:

Glutathione

GST:

Glutathione-S-transferase

MALDI-TOF:

Matrix-assisted laser desorption ionization time-of-flight

MS:

Mass spectrum

PEBP:

Phosphatidylethanolamine-binding family protein

PHGPx:

Phospholipid hydroperoxide glutathione peroxidase

ROS:

Reactive oxygen species

SE:

Somatic embryogenesis

TFA:

Trifluoroacetic acid

References

  • Baldwin TC, Domingo C, Schindler T, Seetharaman G, Stacey N, Roberts K (2001) DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins. Plant Mol Biol 45:421–435

    Article  PubMed  CAS  Google Scholar 

  • Beeor-Tzahar T, Ben-Hayyim G, Holland D, Faltin Z, Eshdat Y (1995) A stress-associated citrus protein is a distinct plant phospholipids hydroperoxide glutathione peroxidase. FEBS Lett 366:151–155

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Caliskan M, Turet M, Cuming AC (2004) Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxidegenerating germin-like oxalate oxidase. Planta 219:132–140

    Article  PubMed  CAS  Google Scholar 

  • Chen SX, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 86:715–730

    Google Scholar 

  • Cyr RJ, Bustos MM, Guiltinan MJ, Fosket DE (1987) Developmental modulation of tubulin protein and mRNA levels during somatic embryogenesis in cultured carrot cells. Planta 171:365–376

    Article  CAS  Google Scholar 

  • Dai SJ, Chen TT, Chong K, Xue YB, Liu SQ, Wang T (2007) Proteomic identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    PubMed  CAS  Google Scholar 

  • Depege N, Drevet J, Boyer N (1998) Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins. Eur J Biochem 253:445–451

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem 277:30859–30869

    Article  PubMed  CAS  Google Scholar 

  • Edward JV, Helen LM, Ramachandran K, Ishita C, Bernard AK (1998) DNA repair in higher plants. Mutat Res 400:187–200

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Francesco C, Maria CT, Fabio DP, Francesco GC (1998) Somatic embryogenesis and plant regeneration from undeveloped ovules and stigma/style explants of sweet orange navel group [Citrus sinensis (L.) Osb]. Plant Cell Tissue Organ Cult 54:183–189

    Article  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    Article  PubMed  CAS  Google Scholar 

  • Giovanni C, Maurizio B, Luca M, Laura S, Gian Marco G, Barbara C, Paola O, Luciano Z, Pier GR (2004) Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333

    Article  Google Scholar 

  • Hirotaka I, Fumi H, Taro S, Kanae S, Yumi M, Makoto S, Takeo K, Michiko H, Kazunori H, Yasuhito N (2003) Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun 305:278–286

    Article  Google Scholar 

  • Holland D, Ben-Hayyim G, Faltin Z, Camoin L, Strosberg AD, Eshdat Y (1993) Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol Biol 21:923–927

    Article  PubMed  CAS  Google Scholar 

  • Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang X, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Irena S, Renata B (2006) Cyanide action in plants—from toxic to regulatory. Acta Physiol Plant 28:483–497

    Article  Google Scholar 

  • Jean-Michel P, Jean-François B, Stephane L (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359:575–582

    Article  Google Scholar 

  • Kathleen AM (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Mol Biol 47:127–158

    Article  Google Scholar 

  • Kevers C, Gal NL, Monteiro M, Dommes J, Gaspar T (2000) Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regul 31:209–214

    Article  CAS  Google Scholar 

  • Kumar PP, Joy RW IV, Thorpe TA (1989) Ethylene and carbon dioxide accumulation and growth of cell suspension cultures of Picea glauca (white spruce). J Plant Physiol 135:592–596

    Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Deng XX (2002) Regeneration and analysis of citrus interspecific mixoploid hybrid plants from asymmetric somatic hybridization. Euphytica 125:13–20

    Article  CAS  Google Scholar 

  • Liu HY, Xiao LT, Lu XD, Hu JJ, Wu S, He CZ, Deng XX (2005) Changes in polyamine levels in Citrus sinensis Osb. cv. Valencia callus during somatic embryogenesis. J Plant Physiol Mol Biol 31(3):275–280

    Google Scholar 

  • Lobreaux S, Briat JF (1996) Ferritin accumulation and degradation in different organs of pea during development. Biochem J 274:601–606

    Google Scholar 

  • Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astralagus adsurgens Pall.: relationship with H2O2 production and H2O2 metabolizing enzyme activities. Plant Sci 161:125–132

    Article  CAS  Google Scholar 

  • Mária D, Gábor VH, Sholpan D, Katalin T, László S, Imre V, Balázs B, Zoltán K, Dénes D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192–196

    Article  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • Meinke DW (1992) A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258:1647–1650

    Article  PubMed  Google Scholar 

  • Milena M, Marcella B, Luca E, Bhakti P, Alfredo SN, Candida V (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  Google Scholar 

  • Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Plant 40:572–580

    Article  CAS  Google Scholar 

  • Mukaddes K, Kemal NK (2006) The effects of some carbohydrates on growth and somatic embryogenesis in citrus callus culture. Sci Hortic 109:29–34

    Article  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factors requirement of citrus tissue cultures. In: Chapman HD (ed) Proceedings of the International Citrus Symposium, vol 3. Riverside, California, pp 1155–1161

    Google Scholar 

  • Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen H, Dudits D, Fehe′r A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Pauline MH, Paolo A (1996) The ferritins’ molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  Google Scholar 

  • Phyllis AD (2007) Effects of oxidative stress on embryonic development. Birth Defects Res C Embryo Today 81:155–162

    Article  Google Scholar 

  • Ragland M, Theil EC (1993) Ferritin and iron concentration during soybean nodule development. Plant Mol Biol 21:555–560

    Article  PubMed  CAS  Google Scholar 

  • Rakesh M, Dale RS, Cathie R, Kevin DS, Subhash CM (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiate. Physiol Plant 105:155–164

    Article  Google Scholar 

  • Saidu Y (2004) Physicochemical features of rhodanese: a review. Afr J Biotech 3:370–374

    CAS  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, Devries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Smith J, Urbanska KM (1986) Rhodanese Activity in Lotus corniculatus sensu-lato. J Nat Histol 20:1467–1476

    Article  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu TM, van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    PubMed  CAS  Google Scholar 

  • Stefania F, Fabio DP, Francesco C, Maurizio S (2002) Effect of 2, 4-DD and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of Citrus. Plant Cell Tissue Organ Cult 68:57–63

    Article  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of Microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann T, Heintz D, Dorsselaer AV, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Wu XB, Wang J, Liu JH, Deng XX (2008) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol. doi:10.1016/j.jplph.2008.02.005

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plant. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. S. Xiao and Dr. Q. Xu for their critical review of the manuscript. We also thank Shanghai Applied Protein Technology Co. Ltd for the technology support. The research was financially supported by the National Natural Science Foundation of China (No. 30570973, 30830078) and the Ministry of Education of China (IRT0548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxin Deng.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Guan, R., Zhu, S. et al. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28, 281–289 (2009). https://doi.org/10.1007/s00299-008-0633-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0633-7

Keywords

Navigation