Skip to main content
Log in

Rapid identification of a major effect QTL conferring adult plant resistance to stripe rust in wheat cultivar Yaco“S”

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Stripe rust is a devastating disease in common wheat (Triticum aestivum) worldwide. Growing cultivars with adult-plant resistance (APR) is an environmental friendly approach that provides long-term protection to wheat from this disease. Wheat cultivar Yaco“S” showed a high level of APR to stripe rust in the field from 2008 to 2014. The objective of this study was to detect the major quantitative trait loci (QTL) for APR to stripe rust in Yaco“S”. One hundred and eighty-four F2:3 lines were developed from a cross between Yaco“S” and susceptible cultivar Mingxian169. Illumina 90K and 660K single nucleotide polymorphism (SNP) chips were implemented to bulked pools and their parents to identify SNPs associated with the major QTL. A high-density linkage map was constructed using simple sequence repeat (SSR) and SNP markers. Inclusive composite interval mapping detected a major effect QTL Qyryac.nwafu-2BS conferring stable resistance to stripe rust in all tested environments. Qyryac.nwafu-2BS were mapped to a 1.3 cm interval and explained 17.3–51.9% of the phenotypic variation. Compared with stripe rust resistance genes previously mapped to chromosome 2B, Qyryac.nwafu-2BS is likely a new APR gene to stripe rust. Combining SNP iSelect assay and kompetitive allele specific PCR technology, we found that the APR gene could be rapidly and accurately mapped and it is useful for improving stripe rust resistance in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard RW (1960) Princilpes of plant breeding. Wiley, New York

    Google Scholar 

  • Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, Distelfeld A (2014) Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol Breed 34:1549–1562

    Article  CAS  Google Scholar 

  • Babiker EM, Gordon TC, Chao S, Newcomb M, Rouse MN, Jin Y, Wanyera R, Acevedo M, Brown-Guedira G, Williamson S, Bonman JM (2015) Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor Appl Genet 128:605–612

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Ren Y, Xia X, Jiu-yuan Du, Zhou G, Wu L, Zhu H, He Z, Wang C (2012) Mapping of quantitative trait loci for adult plant resistance to stripe rust in German wheat cultivar Ibis. J Integr Agric 11:528–536

    Article  CAS  Google Scholar 

  • Bariana H, Forrest K, Qureshi N, Miah H, Hayden M, Bansal U (2016) Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Mol Breed 36(98):1–10

    CAS  Google Scholar 

  • Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2014) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 33:385–399

    Article  CAS  Google Scholar 

  • Carter AH, Chen XM, Garland-Campbell K, Kidwell KK (2009) Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theor Appl Genet 119:1119–1128

    Article  PubMed  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326

    Article  CAS  Google Scholar 

  • Chen X, Penman L, Wan A, Cheng P (2010) Virulence races of Puccinia striiformis f. sp tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Article  Google Scholar 

  • Chen JL, Chu CG, Souza EJ, Guttieri MJ, Chen XM, Xu S, Hole D, Zemetra R (2012) Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Mol Breed 29:791–800

    Article  CAS  Google Scholar 

  • Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A (2014) Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed 34:1563–1578

    Article  CAS  Google Scholar 

  • Dd K (1943) The estimation of map distance from recombination values. Annu Eugen 161:172–175

    Google Scholar 

  • Dracatos PM, Zhang P, Park RF, McIntosh RA, Wellings CR (2016) Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust. Theor Appl Genet 129:65–76

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp tritici in wheat cultivars. Phytopathology 98:803–809

    Article  CAS  PubMed  Google Scholar 

  • Kassa MT, Haas S, Schliephake E, Lewis C, You FM, Pozniak CJ, Kraemer I, Perovic D, Sharpe AG, Fobert PR, Koch M, Wise IL, Fenwick P, Berry S, Simmonds J, Hourcade D, Senellart P, Duchalais L, Robert O, Foerster J, Thomas JB, Friedt W, Ordon F, Uauy C, McCartney CA (2016) A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theor Appl Genet 129:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Lan C, Liang S, Zhou X, Zhou G, Lu Q, Xia X, He Z (2010) Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology 100:313–318

    Article  PubMed  Google Scholar 

  • Lan C, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, Zhang Y, Yang E (2014) QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol Breed 34:789–803

    Article  CAS  Google Scholar 

  • Li Z, Singh S, Singh RP, Lopez-Vera EE, Huerta-Espino J (2013) Genetics of resistance to yellow rust in PBW343 × Kenya Kudu recombinant inbred line population and mapping of a new resistance gene YrKK. Mol Breed 32:821–829

    Article  CAS  Google Scholar 

  • Line RF, Qayoum A. 1992. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968–1987. US Department of Agriculture Technical Bulletin No. 1788, p 74

  • Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X (2015) Genome-wide linkage mapping of QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2 × Zhong 892. PLoS ONE 10(12):e0145462

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wang M, Chen X, See D, Chao S, Jing J (2014) Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet 127:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Luo PG, Hu XY, Ren ZL, Zhang HY, Shu K, Yang ZJ (2008) Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome 51:922–927

    Article  CAS  PubMed  Google Scholar 

  • Ma DF, Hou L, Tang MS, Wang HG, Li Q, Jing JX (2013) Genetic analysis and molecular mapping of a stripe rust resistance gene YrH9014 in wheat line H9014-14-4-6-1. J Integr Agric 12:638–645

    Article  Google Scholar 

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N’Diaye A, Xu S, Tuberosa R (2015a) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotech J 13:648–663

    Article  CAS  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015b) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3-Genes Genom Genet 5:449–465

    Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • McDonald DB, McIntosh RA, Wellings CR, Singh RP, Nelson JC (2004) Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica 136:239–248

    Article  CAS  Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  PubMed  Google Scholar 

  • Peterson RF, Campell AB, Hannah A (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Pu ZJ, Chen GY, Wei YM, Yang WY, Yan ZH, Zheng YL (2010) Identification and molecular tagging of a stripe rust resistance gene in wheat line P81. Plant Breed 129:53–57

    Article  CAS  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff W, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet 108:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo MA, Ficco DBM, Laido G, Marone D, Papa R, Blanco A, Gadaleta A, De Vita P, Mastrangelo AM (2014) A dense durum wheat × T-dicoccum linkage map based on SNP markers for the study of seed morphology. Mol Breed 34:1579–1597

    Article  Google Scholar 

  • Singh RP, William HM, Huerta-Espino J, Crosby M (2003) Identification and mapping of gene Yr31 for resistance to yellow rust in Triticum aestivum cultivar Pastor. In: Pogna NE, Romano N, Pogna EA, Galterio G (eds) Proceedings of 10th international wheat genetics symposium. Instituto Sperimentale per la Cerealcoltura, Rome, pp 411–413

    Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song WN, Ko L, Henry RJ (1994) Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet 89:509–513

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349

    Article  Google Scholar 

  • Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen X, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124:1–11

    Article  CAS  Google Scholar 

  • Vazquez MD, Zemetra R, Peterson CJ, Mundt CC (2015) Identification of Cephalosporium stripe resistance quantitative trait loci in two recombinant inbred line populations of winter wheat. Theor Appl Genet 128:329–341

    Article  CAS  PubMed  Google Scholar 

  • Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904

    Article  Google Scholar 

  • Wang M, Chen X, Xu L, Cheng P, Bockelman HE (2012) Registration of 70 common spring wheat germplasm lines resistant to stripe rust. J Plant Regist 6:104–110

    Article  Google Scholar 

  • Wang JK, Li HH, Zhang LY, Meng L (2014a) Users’ manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Zeng QD, Shen C, Yuan FP, Wang QL, Wu JH, Xue WB, Zhan GM, Yao S, Chen W, Huang LL, Han DJ, Kang ZS (2015) The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp.tritici in China. Acta Phytopathol Sin 45:641–650

    Google Scholar 

  • Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ, Rong L, Wang QL, Huang LL, Kang ZS (2014) Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet 127:2349–2358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by: the National Basic Research Program of China (No. 2013CB127700); Special Fund for Agro-scientific Research in the Public Interest (No. 201203014); the earmarked fund for Modern Agro-industry Technology Research System (No. CARS-3-1-11); the National Natural Science Foundation of China (31371924) and the 111 Project from the Ministry of Education of China (B07049).

Author information

Authors and Affiliations

Authors

Contributions

H.Y.L. conducted the phenotyping and genotyping experiments, H.Y.L. and Q.L.W. analyzed the data, and drafted the manuscript. D.J.H. and Z.S.K. conceived and directed the project and revised the manuscript. L.S.X and L.L.H. codirected the project and revised the manuscript. J.H.W., Q.L.W., S.Z.Y., J.M.M. and Q.D.Z. participated in field and greenhouse experiments and data collection. All authors have read and approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Dejun Han or Zhensheng Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, Q., Xu, L. et al. Rapid identification of a major effect QTL conferring adult plant resistance to stripe rust in wheat cultivar Yaco“S”. Euphytica 213, 124 (2017). https://doi.org/10.1007/s10681-017-1912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1912-6

Keywords

Navigation