Skip to main content

Advertisement

Log in

Identification of Cephalosporium stripe resistance quantitative trait loci in two recombinant inbred line populations of winter wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Identification of genome regions linked to Cephalosporium stripe resistance across two populations on chromosome 3BS, 4BS, 5AL, C5BL. Results were compared to a similar previous study.

Abstract

Cephalosporium stripe is a vascular wilt disease of winter wheat (Triticum aestivum L.) caused by the soil-borne fungus Cephalosporium gramineum Nisikado & Ikata. In the USA it is known to be a recurring disease when susceptible cultivars are grown in the wheat-growing region of Midwest and Pacific Northwest. There is no complete resistance in commercial wheat cultivars, although the use of moderately resistant cultivars reduces the disease severity and the amount of inoculum in subsequent seasons. The goal of this study was to detect and to compare chromosomal regions for resistance to Cephalosporium stripe in two winter wheat populations. Field inoculation was performed and Cephalosporium stripe severity was visually scored as percent of prematurely ripening heads (whiteheads) per plot. ‘Tubbs’/‘NSA-98-0995’ and ‘Einstein’/‘Tubbs’, each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 271 and 259 F (5:6) recombinant inbred lines, respectively, were genotyped and phenotyped across four environments. In the quantitative trait loci (QTL) analysis, six and nine QTL were found, explaining in total, around 30 and 50 % of the phenotypic variation in ‘Tubbs’/‘NSA-98-0995’ and ‘Einstein’/‘Tubbs’, respectively. The QTL with the largest effect from both ‘NSA-98-0995’ and ‘Einstein’ was on chromosome 5AL.1 and linked to marker gwm291. Several QTL with smaller effects were identified in both populations on chromosomes 5AL, 6BS, and 3BS, along with other QTL identified in just one population. These results indicate that resistance to Cephalosporium stripe in both mapping populations was of a quantitative nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5:1–16

    Article  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Baaj DW, Kondo N (2011) Genotyping Cephalosporium gramineum and development of a marker for molecular diagnosis. Plant Pathol 60:730–738

    Article  CAS  Google Scholar 

  • Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926

    Article  CAS  PubMed  Google Scholar 

  • Bockus WW, Claassen MM (1985) Effect of lime and sulfur application to low-ph soil on incidence of Cephalosporium stripe in winter wheat. Plant Dis 69:576–578

    Article  Google Scholar 

  • Bockus WW, Sim T (1982) Quantifying Cephalosporium stripe disease severity on winter wheat. Phytopathology 72:493–495

    Article  Google Scholar 

  • Bockus WW, Davis MA, Todd TC (1994) Grain yield responses of winter wheat coinoculated with Cephalosporium gramineum and Gaeumannomyces graminis var. tritici. Plant Dis 78:11–14

    Article  Google Scholar 

  • Bovill WD, Ma W, Ritter K, Collard BCY, Davis M, Wildermuth GB, Sutherland MW (2006) Identification of novel QTL for resistance to crown rot in the doubled haploid wheat population ‘W21MMT70’ × ‘Mendos’. Plant Breed 125:538–543

    Article  CAS  Google Scholar 

  • Bruehl GW (1956) Cephalosporium stripe disease of wheat in Washington. Phytopathology 46:178–179

    Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Chen J, Li GH, Du ZY, Quan W, Zhang HY, Che MZ, Wang Z, Zhang ZJ (2013) Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet 126:2865–2878

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowger C, Mundt CC (1998) A hydroponic seedling assay for resistance to Cephalosporium stripe of wheat. Plant Dis 82:1126–1131

    Article  Google Scholar 

  • Cox CM, Murray TD, Jones SS (2002) Perennial wheat germplasm lines resistant to eyespot Cephalosporium stripe and wheat streak mosaic. Plant Dis 86:1043–1048

    Article  Google Scholar 

  • Cuthbert PA, Somers DJ, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellerse JP, Meinhardtb SW, Rasmussenb JB, Xua SS, Oliverf RP, Simonsa KJ, Friesena TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • GrainGenes 2.0 (2013) A database for Triticeae and Avena Maps tml. http://wheatpwusdagov/ggpages/map_shortlisth. Accessed 23 Nov 2013

  • Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2010) Estimating and interpreting heritability for plant breeding: an update plant breeding reviews. Wiley, New York, pp 9–112

  • Johnston RH, Mathre DE (1972) Effect of infection by Cephalosporium gramineum on winter wheat. Crop Sci 12:817–819

    Article  Google Scholar 

  • Jones SS, Lyon SR, Balow KA, Gollnick MA, Murphy KM, Kuehner JS, Campbell KG (2010) Registration of ‘Xerpha’ wheat. J Plant Regist 4:137–140

    Article  Google Scholar 

  • Joshi AK, Chand R, Kumar S, Singh RP (2004) Leaf tip necrosis. Crop Sci 44:792–796

    Article  Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes Vrn1 Q and B1 on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Knott DR (2000) Inheritance of resistance to stem rust in Medea durum wheat and the role of suppressors. Crop Sci 40:98–102

    Article  Google Scholar 

  • Kobayashi K, Ui T (1979) Phytotoxicity and anti-microbial activity of Graminin-A produced by Cephalosporium gramineum the causal agent of Cephalosporium stripe disease of wheat. Physiol Plant Pathol 14:129–133

    Article  CAS  Google Scholar 

  • Kronstad WE, Rohde CR, Kolding MF, Metzger RJ (1978) Registration of ‘Stephens’ wheat (Reg No 614). Crop Sci 18:1097

    Article  Google Scholar 

  • Lai P, Bruehl GW (1967) Antagonism among Cephalosporium gramineum Fusarium culmorum and Trichoderma spp. in wheat straw buried in soil. Phytopathology 57:1006–1007

    Google Scholar 

  • Lillemo M, Joshi AK, Prasad R, Chand R, Singh RP (2013) QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet 126:711–719

    Article  CAS  PubMed  Google Scholar 

  • Limagrain UK (2013) http://wwwlimagraincouk/products/details/11html. Accessed 01 March 2013

  • Liu S, Griffey CA, Hall MD, McKendry AL, Chen J, Brooks WS, Schmale DG (2013) Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor Appl Genet 126:2485–2498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance gene”. Natl Acad Sci USA 104:14861–14866

    Article  CAS  Google Scholar 

  • Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, Tzeng SC, Wolpert TJ (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science 338:659–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 122:143–157

    Article  Google Scholar 

  • Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DB, Giancaspro A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Martyniuk S, Stochmal A, Macias FA, Marin D, Oleszek W (2006) Effects of some benzoxazinoids on in vitro growth of Cephalosporium gramineum and other fungi pathogenic to cereals and on Cephalosporium stripe of winter wheat. J Agric Food Chem 54:1036–1039

    Article  CAS  PubMed  Google Scholar 

  • Mathre DE, Johnston RH (1975) Cephalosporium stripe of winter wheat: infection processes and host response (Cephalosporium gramineum fungus diseases). Phytopathology 65:1244–1249

    Article  Google Scholar 

  • Mathre DE, Johnston RH, Martin JM (1985) Sources of resistance to Cephalosporium gramineum in Triticum and Agropyron species. Euphytica 34:419–424

    Article  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Risser P, Paillard S, Schnurbusch T, Keller B, Hartl L, Utz HF (2012) Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breed 29:731–742

    Article  CAS  Google Scholar 

  • Morton JB, Mathre DE (1980a) Physiological effects of Cephalosporium gramineum on growth and yield of winter wheat cultivars. Phytopathology 70:807–811

    Article  Google Scholar 

  • Morton JB, Mathre DE (1980b) Identification of resistance to Cephalosporium stripe in winter wheat. Phytopathology 70:812–817

    Article  Google Scholar 

  • Morton JB, Mathre DE, Johnston RH (1980) Relation between foliar symptoms and systemic advance of Cephalosporium gramineum during winter wheat development. Phytopathology 70:802–807

    Article  Google Scholar 

  • Muhovski Y, Batoko H, Jacquemin J-M (2012) Identification characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection. Mol Biol Rep 39:9583–9600

    Article  CAS  PubMed  Google Scholar 

  • Mundt CC (2002) Performance of wheat cultivars and cultivar mixtures in the presence of Cephalosporium stripe. Crop Prot (Guildford Surrey) 21:93–99

    Article  Google Scholar 

  • Mundt CC (2010) Cephalosporium stripe, vol 3. In: Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW (eds) Compendium of wheat diseases and pests, 3rd edn. APS, St. Paul, pp 24–27

  • Murray TD (2006) Seed transmission of Cephalosporium gramineum in winter wheat. Plant Dis 90:803–806

    Article  Google Scholar 

  • Nisikado Y, Matsumoto H, Yamauti K (1934) Studies on a new Cephalosporium which causes the stripe disease of wheat. Berichte des Ohara Instituts fur Landwirtschaftliche Biologie Okayama Universitat, vol 6, pp 275–306

  • Oxley S (2009) Cephalosporium leaf stripe in winter wheat. Technical Note TN618. Scottish Agricultural College, Edinburgh

  • Poole GJ, Smiley RW, Paulitz TC, Walker CA, Carter AH, See DR, Garland-Campbell K (2012) Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. Theor Appl Genet 125:91–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quincke MC, Peterson CJ, Zemetra RS, Hansen JL, Chen JL, Riera-Lizarazu O, Mundt CC (2011) Quantitative trait loci analysis for resistance to Cephalosporium stripe a vascular wilt disease of wheat. Theor Appl Genet 122:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Quincke MC, Peterson CJ, Mundt CC (2012) Relationship between incidence of Cephalosporium stripe and yield loss in winter wheat. Int J Agron 2012:1–9

    Article  Google Scholar 

  • Quincke MC, Murray TD, Peterson CJ, Sackett KE, Mundt CC (2014) Biology and control of Cephalosporium stripe of wheat. Plant Pathol 63:1207–1217

    Article  Google Scholar 

  • Rahman M, Mundt CC, Wolpert TJ, Riera-Lizarazu O (2001) Sensitivity of wheat genotypes to a toxic fraction produced by Cephalosporium gramineum and correlation with disease susceptibility. Phytopathology 91:702–707

    Article  CAS  PubMed  Google Scholar 

  • Raymond PJ, Bockus WW (1983) Effect of seeding date of winter-wheat on incidence severity and yield loss due to Cephalosporium stripe. Phytopathology 73:844

    Google Scholar 

  • Richardson MJ, Rennie WJ (1970) An estimate of the loss of yield caused by Cephalosporium gramineum in wheat. Plant Pathol 19:138–140

    Article  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation adaptation and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T (2011) Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology 101:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc (2000) SAS Version 9.1.3 Cary North Caroline

  • Shefelbine PA, Bockus WW (1989) Decline of Cephalosporium stripe by monoculture of moderately resistant winter wheat cultivars. Phytopathology 79:1127–1131

    Article  Google Scholar 

  • Silva LDCE, Wang S, Zeng Z-B (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using windows QTL cartographer. In: Rifkin SA (ed) Quantitative trait loci (QTL). Humana Press, New York, pp 75–119

  • Triticarte (2013) Wheat DArT Yarralumla ACT 2600 Australia. http://wwwtriticartecomau/content/wheat_diversity_analysishtml

  • USDA-AMS (2013) Plant Variety Protection Office Beltsville MD. http://wwwars-gringov/cgi-bin/npgs/html/pvplistpl? Accessed 01 March 2013

  • Van Ooijen JW (2006) JoinMap 4.0. Software for the calculation of genetic linkage maps in experimental populations. Plant Research International, Wageningen

  • Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Raleigh NC

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Oregon Wheat Commission and Warren Kronstad Endowment for funding the project. They also thank the Columbia Basin Agricultural Research Center staff, Kathryn Sackett, Larae Wallace and Mark Larson for their excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical standards

The experiments comply with the current US laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dolores Vazquez.

Additional information

Communicated by Thomas Miedaner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez, M.D., Zemetra, R., Peterson, C.J. et al. Identification of Cephalosporium stripe resistance quantitative trait loci in two recombinant inbred line populations of winter wheat. Theor Appl Genet 128, 329–341 (2015). https://doi.org/10.1007/s00122-014-2433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2433-5

Keywords

Navigation