Skip to main content
Log in

Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This manuscript reports a new gene (Yr62) and a small-effect QTL for potentially durable resistance to stripe rust and usefulness of Yr62 markers for marker-assisted selection.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat worldwide. Spring wheat germplasm PI 192252 showed a high level of high-temperature adult-plant (HTAP) resistance to stripe rust in germplasm evaluation over 8 years in the State of Washington. To elucidate the genetic basis of resistance, PI 192252 was crossed with ‘Avocet susceptible’. A mapping population of 150 F5 recombinant inbred lines was developed using single-seed descent. Stripe rust tests were conducted with selected Pst races in a greenhouse and in field conditions under natural infections. The relative area under the disease progress curve (rAUDPC) data showed continuous distributions, indicating that HTAP resistance of PI 192252 was controlled by quantitative trait loci (QTL). Two QTL were identified in PI 192252, explaining 74.2 % of the total phenotypic variation for rAUDPC. These two QTL were mapped to chromosomes 4BL (QYrPI192252.wgp-4BL) and 5BS (QYrPI192252.wgp-5BS) with SSR and SNP markers and explained 40–60 and 22–27 %, respectively, of the phenotypic variation across the four environments. Because the major-effect QTL on 4BL is different from previously named Yr genes and inherited as a single gene, it is named Yr62. The SSR marker alleles Xgwm192 222 and Xgwm251 133 flanking Yr62 were different from the alleles in various wheat varieties, suggesting that these markers could be useful in marker-assisted selection for incorporating Yr62 into commercial cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agenbag GM, Pretorius ZA, Boyd LA, Bender CM, Prins R (2012) Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle–Desprez. Theor Appl Genet 125:109–120

    Article  CAS  PubMed  Google Scholar 

  • Bansal U, Forrest K, Hayden M, Miah H, Singh D, Bariana H (2011) Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655

    Article  Google Scholar 

  • Chen XM (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627

    Article  Google Scholar 

  • Chen XM, Line RF (1992a) Identification of stripe rust resistance genes in wheat cultivars used to differentiate North American races of Puccinia striiformis. Phytopathology 82:1428–1434

    Article  Google Scholar 

  • Chen XM, Line RF (1992b) Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology 82:633–637

    Article  Google Scholar 

  • Chen XM, Line RF (1995a) Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology 85:567–572

    Article  Google Scholar 

  • Chen XM, Line RF (1995b) Gene number and inheritability of wheat cultivars with durable, high-temperature, adult-plant resistance and race-specific resistance to Puccinia striiformis. Phytopathology 85:573–578

    Article  Google Scholar 

  • Chen XM, Penman L, Wan AM, Cheng P (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Article  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Hao YF, Chan ZB, Wang YY, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411

    Article  PubMed  Google Scholar 

  • He ZH, Lan CX, Chen XM, Zou YC, Zhuang QS, Xia XC (2011) Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin 44:2193–2215

    Google Scholar 

  • Jagger LJ, Newell C, Berry ST, MacCormack R, Boyd LA (2011) The genetic characterisation of stripe rust resistance in the German wheat cultivar Alcedo. Theor Appl Genet 122:723–733

    Article  CAS  PubMed  Google Scholar 

  • Johnson R (1981) Durable resistance: definition, genetic control, and attainment in plant breeding. Phytopathology 71:567–568

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Chen XM (1995) Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis 79:1254–1255

    Google Scholar 

  • Line RF, Qayoum A (1992) Virulence aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968-87. U.S. Department of Agriculture Technical Bulletin No. 1788, the National Technical Information Service, Springfield, p 44

  • Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X, Jia JQ, Zhan HX, Guo HJ, Wang JM (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Lu YM, Lan CX, Liang SS, Zhou XC, Liu D, Zhou G, Lu QL, Jing JX, Wang MN, Xia XC, He ZH (2009) QTL mapping for adult plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA (2008) QTL identification and microphenotype characterization of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor Appl Genet 117:391–399

    Article  CAS  PubMed  Google Scholar 

  • Milus EA, Line RF (1986) Number of genes controlling high temperature adult-plant resistance to stripe rust in wheat. Phytopathology 76:93–96

    Article  Google Scholar 

  • Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125

    Article  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Chapter  Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujan S (ed) Proceedings of the 5th International Wheat Genet Symposium Indian Society of Genetics and Plant Breeding. Indian Agri Res Inst, New Delhi, pp 389–407

    Google Scholar 

  • Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings C, Xi KQ, Wanyera R, Manninger K, Ganzález MI, Koyda M, Sanin S, Patzek LJ (2013) Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis 97:379–386

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wan AM, Chen XM (2012) Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Dis 96:67–74

    Article  Google Scholar 

  • Wang S, Basten JC, Zeng ZB (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

  • Wang MN, Chen XM, Xu LS, Cheng P, Bockelman H (2012) Registration of 70 common spring wheat germplasm lines resistant to stripe rust. J Plant Regist 6:104–110

    Article  Google Scholar 

  • Wellings CR, Boyd LA, Chen XM (2012) Resistance to stripe rust in wheat: Pathogen biology driving resistance breeding. In: Sharma I (ed) Disease resistance in wheat. CAB International, Wallingford, pp 63–83

    Chapter  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Bai G, Shaner GE (2005) Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theor Appl Genet 111:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the US Department of Agriculture, Agricultural Research Service (Project No. 5348-22000-015-00D) and Washington State University (Project No. 13C-3061-5665 and 13Z-3061-6665) PPNS No. 0650, Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center, HATCH Project Number WNP00663, Washington State University, Pullman, WA 99164-6430, USA. The research is also part of the Northwest A&F University Plant Pathology the “973” project (2013CB127700) and ‘‘111’’ Project (B07049). The China Scholarship Council scholarship to Yan Lu is greatly appreciated. We thank Dr. Robert McIntosh and Dr. Mike Pumphrey for critical review of the manuscript.

Conflict of interest

None.

Ethical standards

All experiments were conducted in Pullman, Washington, the USA, and part of data analyses and manuscript development were done at Northwest A&F University. All authors have contributed to the study and approved the version for submission. The manuscript has not been submitted to any other journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Chen.

Additional information

Communicated by X. Xia.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Y. Lu and M. Wang made equal contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wang, M., Chen, X. et al. Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet 127, 1449–1459 (2014). https://doi.org/10.1007/s00122-014-2312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2312-0

Keywords

Navigation