Skip to main content
Log in

Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The wheat (Triticum aestivum L.) cultivar ‘Stephens’ has been grown commercially in the USA Pacific Northwest for 30 years. The durable resistance of ‘Stephens’ to stripe rust (Puccinia striiformis f. sp. tritici) was believed to be due to a combination of seedling and adult plant resistance genes. Multilocation field trials, diversity array technology (DArT), and simple sequence repeat (SSR) markers were used to identify quantitative trait loci (QTL) for resistance. Recombinant inbred lines were assessed for stripe rust response in eight locations/years, five in 2008 and three in 2009. The data from Mt. Vernon, WA, differed from all other environments, and composite interval mapping (CIM) identified three QTL, QYrst.orr-1AL, QYrst.orr-4BS, and QYrpl.orr-6AL, which accounted for 12, 11, and 6% of the phenotypic variance, respectively. CIM across the remaining six environments identified four main QTL. Two QTL, QYrst.orr-2BS.2 and QYrst.orr-7AS, were detected in five of six environments and explained 11 and 15% of the phenotypic variance, respectively. Two other QTL, QYrst.orr-2AS and QYrpl.orr-4BL, were detected across four and three of six environments, and explained 19 and 9% of the phenotypic variance, respectively. The susceptible parent ‘Platte’ contributed QYrpl.orr-4BL and QYrpl.orr-6AL, with the remaining QTL originating from ‘Stephens’. For each environment, additional minor QTL were detected, each accounting for 6–10% of the phenotypic variance. Different QTL with moderate effects were identified in both ‘Stephens’ and ‘Platte’. Significant QTL × environment interactions were evident, suggesting that specificity to plant stage, pathogen genotype, and/or temperature was important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat XV. Location of rust resistance genes in VPM1 and their genetic linkage with other resistance genes in chromosome 2A. Genome 36:476–482

    Article  PubMed  CAS  Google Scholar 

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  PubMed  CAS  Google Scholar 

  • Calonnec A, Johnson R (1998) Chromosomal location of genes for resistance to Puccinia striiformis in the wheat line TP1295 selected from the cross of Soissonais-Desprez with Lemhi. Eur J Plant Pathol 104:835–847

    Article  CAS  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM, Line RF (1995a) Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology 85:567–572

    Article  Google Scholar 

  • Chen XM, Line RF (1995b) Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant resistance and race-specific resistance to Puccinia striiformis. Phytopathology 85:573–578

    Article  Google Scholar 

  • Chen XM, Line RF, Jones SS (1995) Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres and Daws. Phytopathology 85:1362–1367

    Article  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  PubMed  CAS  Google Scholar 

  • Churchill G, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat “Renan”. Phytopathology 99:968–973

    Article  PubMed  CAS  Google Scholar 

  • Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A, Wellings CR (2004) Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    Article  PubMed  CAS  Google Scholar 

  • GrainGenes 2.0 (2009) A database for Triticeae and Avena maps. http://wheat.pw.usda.gov/ggpages/map_shortlist.html. Accessed on November 23 2009

  • Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f sp tritici in wheat cultivars. Phytopatology 98:803–809

    Article  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Rev 22:9–112

    Google Scholar 

  • Hovmøller MS, Yahyaoui AH, Milus EA, Justesen AF (2008) Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol 17:3818–3826

    Article  PubMed  Google Scholar 

  • Johnson R (1981) Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology 71:567–568

    Article  Google Scholar 

  • Kronstad WE, Rohde CR, Kolding MF, Metzger RJ (1978) Registration of Stephens wheat. Crop Sci 18:1097

    Article  Google Scholar 

  • Leonard JM, Watson CJ, Carter AH, Hansen JL, Zemetra RS, Santra DK, Garland Campbell KA, Riera-Lizarazu O (2008) Identification of a candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pch1. Theor Appl Genet 116:261–270

    Article  PubMed  CAS  Google Scholar 

  • Li ZF, Xia XC, Zhou XC, Niu YC, He ZH, Zhang Y, Li GQ, Wan AM, Wang DS, Chen XM, Lu QL, Singh RP (2006) Seedling and slow rusting resistance to stripe rust in Chinese common wheats. Plant Dis 90:1302–1312

    Article  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Luo PG, Ren ZL, Zhang HQ, Zhang HY (2005) Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology 95:1266–1270

    Article  PubMed  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Article  Google Scholar 

  • Markell SG, Milus EA (2008) Emergence of a novel population of Puccinia striiformis f. sp. tritici in eastern United States. Phytopathology 98:632–639

    Article  PubMed  CAS  Google Scholar 

  • McDonald DB, McIntosh RA, Wellings CR, Singh RP, Nelson JC (2004) Cytogenetical studies in wheat XIX Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica 136:239–248

    Article  CAS  Google Scholar 

  • Milus EA, Seyran E, McNew R (2006) Aggressiveness of Puccinia striiformis f sp. tritici isolates in the south-central United States. Plant Dis 90:847–852

    Article  Google Scholar 

  • Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94

    Article  PubMed  Google Scholar 

  • Niks RE, Rubiales D (2002) Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 124:201–216

    Article  CAS  Google Scholar 

  • Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125

    Article  Google Scholar 

  • Riera-Lizarazu O, Vales IM, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome radiation hybrids derived from an oat–maize addition line. Genetics 156:329–339

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management Mexico, DF, CIMMYT pp 45

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar Stephens. Theor Appl Genet 117:793–802

    Article  PubMed  CAS  Google Scholar 

  • SAS 913 2005 Institute Inc SAS software, Version 913 Cary, NC, USA: SAS Institute Inc 2000

  • Singh RP, Huerta-Espino J, Bhavani S, Singh D, Singh PK, Herrera-Foessel SA, Njau P, Wanyera R, Jin Y (2009) Breeding for minor gene-based adult plant resistance to stem rust in wheat. In: Borlaug global rust initiative, technical workshop Cd Obregon, Sonora, Mexico, March 17–20, 2009, pp 67

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Leon A, Bridges WC, Knapp SJ (2006) Quantitative trait loci for genetically correlated seed traits are tightly linked to branching and pericarp pigment loci in sunflower. Crop Sci 46:721–734

    Article  Google Scholar 

  • Triticarte (2009) Wheat DArT® Yarralumla ACT 2600 Australia. http://www.triticarte.com.au/content/wheat_diversity_analysis.html. Accessed on April 23, 2009

  • USDA-AMS (2009) Plant Variety Protection Office Beltsville, MD. http://www.ars-grin.gov/cgi-bin/npgs/html/pvplist.pl? Accessed on April 23 2009

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: A test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 40: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 25. Department of Statistics. North Carolina State University, Raleigh

    Google Scholar 

  • Wheat Pedigree On Line (2009) Wheat pedigree and identified alleles of genes on line. http://genbank.vurv.cz/wheat/pedigree/pedigree.asp. Accessed on April 23, 2009

  • Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton

    Google Scholar 

  • Yang R-C, Crossa J, Cornelius PL, Burgueño J (2009) Biplot analysis of genotype × environment interaction: proceed with caution. Crop Sci 49:1564–1576

    Article  Google Scholar 

  • Zhang P, McIntosh RA, Hoxha S, Dong C (2009) Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor Appl Genet 120:25–29

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dolores Vazquez.

Additional information

Communicated by J. Snape.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

122_2011_1681_MOESM2_ESM.pdf

Frequency distributions of stripe rust ratings for 156 RILs derived from ‘Stephens’ x ‘Platte’ in eight environments. The response of the susceptible and resistant parents are shown on each frequency distribution Supplementary material 2 (PDF 180 kb)

122_2011_1681_MOESM3_ESM.pdf

Linkage map of wheat based on the mapping population from a cross between ‘Stephens’ x ‘Platte’ Supplementary material 3 (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolores Vazquez, M., James Peterson, C., Riera-Lizarazu, O. et al. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124, 1–11 (2012). https://doi.org/10.1007/s00122-011-1681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1681-x

Keywords

Navigation