Skip to main content

Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods

Abstract

Triodia pungens is one of the 69 species of an Australian native arid grass which covers approximately 27 % of the Australian landmass. In this study, we report that very long and thin cellulose nanofibrils can readily be isolated from Triodia pungens biomass using unrivalled mild chemical pulping, followed by several mechanical fibrillation methods. After a typical pulping process which includes washing, delignification and bleaching steps, mechanical fibrillation was performed via high pressure homogenization, ultrasonication and high energy ball milling using relatively minimal energy in all approaches. Cellulose nanofibrils with an average diameter of below 10 nm and a length of several microns were obtained. It also has been shown that the nanofibrils obtained from Triodia pungens have a crystallinity index of about 69 %, and a thermal stability of up to 320 °C. The sheets produced from high aspect ratio nanofibrils prepared by high pressure homogenization, also demonstrated a very high work at fracture. By evaluating the deconstruction strategies and the performance of nanofibril sheets, we report that the high-performance cellulose nanofibrils can be processed from arid grass bleached pulp with unusually low energy input.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi:10.1016/j.carbpol.2013.08.069

    CAS  Article  Google Scholar 

  2. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/Bm700624p

    CAS  Article  Google Scholar 

  3. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475. doi:10.1016/j.carbpol.2011.06.034

    CAS  Article  Google Scholar 

  4. Abraham E et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483. doi:10.1016/j.carbpol.2012.10.056

    CAS  Article  Google Scholar 

  5. Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167. doi:10.1023/B:CELL.0000025423.32330.fa

    CAS  Article  Google Scholar 

  6. Ahola S, Osterberg M, Laine J (2008a) Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314. doi:10.1007/s10570-007-9167-3

    CAS  Article  Google Scholar 

  7. Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282. doi:10.1021/bm701317k

    CAS  Article  Google Scholar 

  8. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    CAS  Article  Google Scholar 

  9. Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259. doi:10.1016/j.indcrop.2012.04.028

    CAS  Article  Google Scholar 

  10. Allan GE, Southgate RI (2002) Fire regimes in the spinifex landscapes of Australia. In: Bradstock RA, Williams JE, Gill MA (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 145–176

  11. Amiralian N, Annamalai PK, Fitzgerald C, Memmott P, Martin DJ (2014) Optimisation of resin extraction from an Australian arid grass ‘Triodia pungens’ and its preliminary evaluation as an anti-termite timber coating. Ind Crops Prod 59:241–247. doi:10.1016/j.indcrop.2014.04.045

    CAS  Article  Google Scholar 

  12. Amiralian N, Annamalai PK, Memmott P, Taran E, Schmidt S, Martin DJ (2015) Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia’s arid zone RSC. Advances 5:32124–32132. doi:10.1039/C5RA02936H

    CAS  Google Scholar 

  13. Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr Polym 87:265–273. doi:10.1016/j.carbpol.2011.07.047

    CAS  Article  Google Scholar 

  14. Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering, 1.ed.08th edn. Springer, New York

    Google Scholar 

  15. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620. doi:10.1016/j.eurpolymj.2009.12.025

    CAS  Article  Google Scholar 

  16. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268. doi:10.1177/0731684405049864

    CAS  Article  Google Scholar 

  17. Bhattacharya D, Germinario L, Winter W (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377. doi:10.1016/j.carbpol.2007.12.005

    CAS  Article  Google Scholar 

  18. Borrega M, Nieminen K, Sixta H (2011) Effects of hot water extraction in a batch reactor on the delignification of birch wood. Bioresources 6:1890–1903

    CAS  Google Scholar 

  19. Bourree G, Herring W, Jack D (2004) Cellulose pulp having increased hemicellulose content

  20. Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716. doi:10.1021/bm8010903

    CAS  Article  Google Scholar 

  21. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. doi:10.1515/hf.2005.016

  22. Charreau HL, Foresti M, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80. doi:10.2174/187221013804484854

    CAS  Article  Google Scholar 

  23. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615. doi:10.1016/j.carbpol.2008.11.030

    CAS  Article  Google Scholar 

  24. Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461. doi:10.1016/j.carbpol.2011.04.061

    CAS  Article  Google Scholar 

  25. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi:10.1016/j.carbpol.2010.10.040

    CAS  Article  Google Scholar 

  26. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z

    CAS  Article  Google Scholar 

  27. Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762. doi:10.1002/app.30160

    CAS  Article  Google Scholar 

  28. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. doi:10.1016/j.carbpol.2010.03.046

    CAS  Article  Google Scholar 

  29. Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. doi:10.1016/j.carbpol.2011.07.009

    CAS  Article  Google Scholar 

  30. de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi:10.1007/s10570-010-9403-0

    Article  Google Scholar 

  31. Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. doi:10.1016/j.biortech.2010.09.030

    CAS  Article  Google Scholar 

  32. Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318. doi:10.1016/j.carbpol.2013.07.073

    CAS  Article  Google Scholar 

  33. Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    CAS  Article  Google Scholar 

  34. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    CAS  Article  Google Scholar 

  35. Ferrer A, Filpponen I, Rodriguez A, Laine J, Rojas OJ (2012a) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255. doi:10.1016/j.biortech.2012.08.108

    CAS  Article  Google Scholar 

  36. Ferrer A et al (2012b) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. doi:10.1007/s10570-012-9788-z

    CAS  Article  Google Scholar 

  37. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. doi:10.1016/j.carbpol.2010.12.029

    CAS  Article  Google Scholar 

  38. Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185. doi:10.1007/s10570-007-9179-z

    CAS  Article  Google Scholar 

  39. Hassan M, Mathew A, Hassan E, El-Wakil N, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205. doi:10.1007/s00226-010-0373-z

    CAS  Article  Google Scholar 

  40. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi:10.1002/App.26946

    CAS  Article  Google Scholar 

  41. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.1021/Bm800038n

    CAS  Article  Google Scholar 

  42. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci, Appl Polym Symp 37:797–813

  43. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n

    CAS  Article  Google Scholar 

  44. Junka K, Filpponen I, Johansson L-S, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115. doi:10.1016/j.carbpol.2012.11.063

    CAS  Article  Google Scholar 

  45. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi:10.1002/anie.201001273

    CAS  Article  Google Scholar 

  46. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    CAS  Article  Google Scholar 

  47. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425. doi:10.1007/s10570-007-9131-2

    CAS  Article  Google Scholar 

  48. Leschinsky M, Weber KH, Patt R, Sixta H (2009) Formation of insoluble components during autohydrolysis of eucalyptus globulus. Lenzing Ber 87:16–25

    CAS  Google Scholar 

  49. Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032. doi:10.1007/s10570-009-9329-6

    Article  Google Scholar 

  50. Li L, Lee S, Lee H, Youn H (2011) Hydrogen peroxide bleaching of hardwood kraft pulp with adsobed birch xylan and its effect on paper properties. Bioresources 6:721–726

    CAS  Google Scholar 

  51. Li W, Yue JQ, Liu SX (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi:10.1016/j.ultsonch.2011.11.007

    CAS  Article  Google Scholar 

  52. Li M, Wang L-J, Li D, Cheng Y-L, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143. doi:10.1016/j.carbpol.2013.11.021

    CAS  Article  Google Scholar 

  53. Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83:2005–2010. doi:10.1016/j.carbpol.2010.11.007

    CAS  Article  Google Scholar 

  54. Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    CAS  Article  Google Scholar 

  55. Mondal S, Memmott P, Wallis L, Martin D (2012) Physico-thermal properties of spinifex resin bio-polymer. Mater Chem Phys 133:692–699. doi:10.1016/j.matchemphys.2012.01.058

    CAS  Article  Google Scholar 

  56. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  Article  Google Scholar 

  57. Morán J, Alvarez V, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  58. Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interface 5:4640–4647. doi:10.1021/Am401046x

    CAS  Article  Google Scholar 

  59. Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/Bm061215p

    CAS  Article  Google Scholar 

  60. Pettersen RC, Schwandt VH (1991) Wood sugar analysis by anion chromatography. J Wood Chem Technol 11:495–501

    CAS  Article  Google Scholar 

  61. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. doi:10.1016/j.carbpol.2013.04.086

    CAS  Article  Google Scholar 

  62. Rice B, Westoby M (1999) Regeneration after fire in Triodia R. Br. Aust J Ecol 24:563–572. doi:10.1046/j.1442-9993.1999.01004.x

    Article  Google Scholar 

  63. Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buléon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53:241–252. doi:10.1016/S0144-8617(03)00069-9

    CAS  Article  Google Scholar 

  64. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s

    CAS  Article  Google Scholar 

  65. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8:2485

    CAS  Article  Google Scholar 

  66. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi:10.1021/bm301674e

    Article  Google Scholar 

  67. Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.1021/bm201777j

    Article  Google Scholar 

  68. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    CAS  Article  Google Scholar 

  69. Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71:382–387. doi:10.1016/j.compscitech.2010.12.007

    CAS  Article  Google Scholar 

  70. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi:10.1021/bm2008907

    CAS  Article  Google Scholar 

  71. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779. doi:10.1016/j.carbpol.2012.01.062

    CAS  Article  Google Scholar 

  72. Siqueira G, Bras J, Dufresne A (2009) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.1021/la9028595

    Article  Google Scholar 

  73. Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    CAS  Article  Google Scholar 

  74. Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010b) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. doi:10.1007/s10570-010-9449-z

    CAS  Article  Google Scholar 

  75. Siro I, Plackett D, Hedenqvist M, Ankerfors M, Lindstrom T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660. doi:10.1002/App.32831

    CAS  Article  Google Scholar 

  76. Song Q, Winter W, Bujanovic B, Amidon T (2014) Nanofibrillated cellulose (NFC): a high-value co-product that improves the economics of cellulosic ethanol production. Energies 7:607–618

    CAS  Article  Google Scholar 

  77. Sonia A, Priya Dasan K (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674. doi:10.1016/j.carbpol.2012.09.015

    CAS  Article  Google Scholar 

  78. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848. doi:10.1007/s10570-010-9424-8

    CAS  Article  Google Scholar 

  79. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi:10.1016/j.biortech.2010.02.104

    CAS  Article  Google Scholar 

  80. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. doi:10.1007/s10570-011-9533-z

    CAS  Article  Google Scholar 

  81. Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45. doi:10.1007/s10570-007-9143-y

    CAS  Article  Google Scholar 

  82. Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563. doi:10.1021/Bm0703160

    CAS  Article  Google Scholar 

  83. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020. doi:10.1007/s10570-010-9431-9

    CAS  Article  Google Scholar 

  84. Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234. doi:10.1016/j.ijbiomac.2012.05.016

    CAS  Article  Google Scholar 

  85. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci, Appl Polym Symp 37:815–827

  86. Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353. doi:10.1021/bm101103p

    Article  Google Scholar 

  87. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi:10.1002/app.30072

    CAS  Article  Google Scholar 

  88. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527. doi:10.1016/j.compscitech.2006.12.015

    CAS  Article  Google Scholar 

  89. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103. doi:10.1007/s10443-006-9032-9

    Article  Google Scholar 

  90. Wang M et al (2011) Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules 12:2074–2081. doi:10.1021/bm101561m

    CAS  Article  Google Scholar 

  91. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013

    CAS  Article  Google Scholar 

  92. Yu Y, Wu H (2011) Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE J 57:793–800. doi:10.1002/aic.12288

    CAS  Article  Google Scholar 

  93. Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofibre film material science. Forum 654–656:1760–1763

    Google Scholar 

  94. Zhao HP, Feng XQ, Gao HJ (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett. doi:10.1063/1.2450666

    Google Scholar 

  95. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093. doi:10.1016/j.carbpol.2009.10.045

    CAS  Article  Google Scholar 

  96. Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59. doi:10.1016/j.carbpol.2008.09.024

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Australian Research Council (under ARC Discovery Grant No. DP0877161). They also acknowledge the Aboriginal collaborator, Dugalunji Aboriginal Corporation in Camooweal for project support, leadership, and the supply of grass. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland and Dr Isabel Marrow for taking images.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Darren J. Martin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiralian, N., Annamalai, P.K., Memmott, P. et al. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22, 2483–2498 (2015). https://doi.org/10.1007/s10570-015-0688-x

Download citation

Keywords

  • Spinifex
  • Triodia pungens
  • Nanofibrillated cellulose (NFC)
  • Cellulose nanofibrils (CNF)
  • Homogenisation
  • Ball milling and ultra-sonication