Skip to main content

Advertisement

Log in

Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Triodia pungens is one of the 69 species of an Australian native arid grass which covers approximately 27 % of the Australian landmass. In this study, we report that very long and thin cellulose nanofibrils can readily be isolated from Triodia pungens biomass using unrivalled mild chemical pulping, followed by several mechanical fibrillation methods. After a typical pulping process which includes washing, delignification and bleaching steps, mechanical fibrillation was performed via high pressure homogenization, ultrasonication and high energy ball milling using relatively minimal energy in all approaches. Cellulose nanofibrils with an average diameter of below 10 nm and a length of several microns were obtained. It also has been shown that the nanofibrils obtained from Triodia pungens have a crystallinity index of about 69 %, and a thermal stability of up to 320 °C. The sheets produced from high aspect ratio nanofibrils prepared by high pressure homogenization, also demonstrated a very high work at fracture. By evaluating the deconstruction strategies and the performance of nanofibril sheets, we report that the high-performance cellulose nanofibrils can be processed from arid grass bleached pulp with unusually low energy input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi:10.1016/j.carbpol.2013.08.069

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/Bm700624p

    Article  CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475. doi:10.1016/j.carbpol.2011.06.034

    Article  CAS  Google Scholar 

  • Abraham E et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483. doi:10.1016/j.carbpol.2012.10.056

    Article  CAS  Google Scholar 

  • Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167. doi:10.1023/B:CELL.0000025423.32330.fa

    Article  CAS  Google Scholar 

  • Ahola S, Osterberg M, Laine J (2008a) Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314. doi:10.1007/s10570-007-9167-3

    Article  CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282. doi:10.1021/bm701317k

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  • Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259. doi:10.1016/j.indcrop.2012.04.028

    Article  CAS  Google Scholar 

  • Allan GE, Southgate RI (2002) Fire regimes in the spinifex landscapes of Australia. In: Bradstock RA, Williams JE, Gill MA (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 145–176

  • Amiralian N, Annamalai PK, Fitzgerald C, Memmott P, Martin DJ (2014) Optimisation of resin extraction from an Australian arid grass ‘Triodia pungens’ and its preliminary evaluation as an anti-termite timber coating. Ind Crops Prod 59:241–247. doi:10.1016/j.indcrop.2014.04.045

    Article  CAS  Google Scholar 

  • Amiralian N, Annamalai PK, Memmott P, Taran E, Schmidt S, Martin DJ (2015) Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia’s arid zone RSC. Advances 5:32124–32132. doi:10.1039/C5RA02936H

    CAS  Google Scholar 

  • Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr Polym 87:265–273. doi:10.1016/j.carbpol.2011.07.047

    Article  CAS  Google Scholar 

  • Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering, 1.ed.08th edn. Springer, New York

    Google Scholar 

  • Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620. doi:10.1016/j.eurpolymj.2009.12.025

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268. doi:10.1177/0731684405049864

    Article  CAS  Google Scholar 

  • Bhattacharya D, Germinario L, Winter W (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377. doi:10.1016/j.carbpol.2007.12.005

    Article  CAS  Google Scholar 

  • Borrega M, Nieminen K, Sixta H (2011) Effects of hot water extraction in a batch reactor on the delignification of birch wood. Bioresources 6:1890–1903

    CAS  Google Scholar 

  • Bourree G, Herring W, Jack D (2004) Cellulose pulp having increased hemicellulose content

  • Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716. doi:10.1021/bm8010903

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. doi:10.1515/hf.2005.016

  • Charreau HL, Foresti M, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80. doi:10.2174/187221013804484854

    Article  CAS  Google Scholar 

  • Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615. doi:10.1016/j.carbpol.2008.11.030

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461. doi:10.1016/j.carbpol.2011.04.061

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi:10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762. doi:10.1002/app.30160

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. doi:10.1016/j.carbpol.2010.03.046

    Article  CAS  Google Scholar 

  • Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. doi:10.1016/j.carbpol.2011.07.009

    Article  CAS  Google Scholar 

  • de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi:10.1007/s10570-010-9403-0

    Article  Google Scholar 

  • Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. doi:10.1016/j.biortech.2010.09.030

    Article  CAS  Google Scholar 

  • Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318. doi:10.1016/j.carbpol.2013.07.073

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Ferrer A, Filpponen I, Rodriguez A, Laine J, Rojas OJ (2012a) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255. doi:10.1016/j.biortech.2012.08.108

    Article  CAS  Google Scholar 

  • Ferrer A et al (2012b) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. doi:10.1007/s10570-012-9788-z

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. doi:10.1016/j.carbpol.2010.12.029

    Article  CAS  Google Scholar 

  • Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185. doi:10.1007/s10570-007-9179-z

    Article  CAS  Google Scholar 

  • Hassan M, Mathew A, Hassan E, El-Wakil N, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205. doi:10.1007/s00226-010-0373-z

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi:10.1002/App.26946

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.1021/Bm800038n

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci, Appl Polym Symp 37:797–813

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n

    Article  CAS  Google Scholar 

  • Junka K, Filpponen I, Johansson L-S, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115. doi:10.1016/j.carbpol.2012.11.063

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425. doi:10.1007/s10570-007-9131-2

    Article  CAS  Google Scholar 

  • Leschinsky M, Weber KH, Patt R, Sixta H (2009) Formation of insoluble components during autohydrolysis of eucalyptus globulus. Lenzing Ber 87:16–25

    CAS  Google Scholar 

  • Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032. doi:10.1007/s10570-009-9329-6

    Article  Google Scholar 

  • Li L, Lee S, Lee H, Youn H (2011) Hydrogen peroxide bleaching of hardwood kraft pulp with adsobed birch xylan and its effect on paper properties. Bioresources 6:721–726

    CAS  Google Scholar 

  • Li W, Yue JQ, Liu SX (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi:10.1016/j.ultsonch.2011.11.007

    Article  CAS  Google Scholar 

  • Li M, Wang L-J, Li D, Cheng Y-L, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143. doi:10.1016/j.carbpol.2013.11.021

    Article  CAS  Google Scholar 

  • Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83:2005–2010. doi:10.1016/j.carbpol.2010.11.007

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  CAS  Google Scholar 

  • Mondal S, Memmott P, Wallis L, Martin D (2012) Physico-thermal properties of spinifex resin bio-polymer. Mater Chem Phys 133:692–699. doi:10.1016/j.matchemphys.2012.01.058

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Morán J, Alvarez V, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  • Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interface 5:4640–4647. doi:10.1021/Am401046x

    Article  CAS  Google Scholar 

  • Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/Bm061215p

    Article  CAS  Google Scholar 

  • Pettersen RC, Schwandt VH (1991) Wood sugar analysis by anion chromatography. J Wood Chem Technol 11:495–501

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. doi:10.1016/j.carbpol.2013.04.086

    Article  CAS  Google Scholar 

  • Rice B, Westoby M (1999) Regeneration after fire in Triodia R. Br. Aust J Ecol 24:563–572. doi:10.1046/j.1442-9993.1999.01004.x

    Article  Google Scholar 

  • Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buléon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53:241–252. doi:10.1016/S0144-8617(03)00069-9

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8:2485

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi:10.1021/bm301674e

    Article  Google Scholar 

  • Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.1021/bm201777j

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71:382–387. doi:10.1016/j.compscitech.2010.12.007

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi:10.1021/bm2008907

    Article  CAS  Google Scholar 

  • Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779. doi:10.1016/j.carbpol.2012.01.062

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.1021/la9028595

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010b) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. doi:10.1007/s10570-010-9449-z

    Article  CAS  Google Scholar 

  • Siro I, Plackett D, Hedenqvist M, Ankerfors M, Lindstrom T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660. doi:10.1002/App.32831

    Article  CAS  Google Scholar 

  • Song Q, Winter W, Bujanovic B, Amidon T (2014) Nanofibrillated cellulose (NFC): a high-value co-product that improves the economics of cellulosic ethanol production. Energies 7:607–618

    Article  CAS  Google Scholar 

  • Sonia A, Priya Dasan K (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674. doi:10.1016/j.carbpol.2012.09.015

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848. doi:10.1007/s10570-010-9424-8

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi:10.1016/j.biortech.2010.02.104

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. doi:10.1007/s10570-011-9533-z

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45. doi:10.1007/s10570-007-9143-y

    Article  CAS  Google Scholar 

  • Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563. doi:10.1021/Bm0703160

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020. doi:10.1007/s10570-010-9431-9

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234. doi:10.1016/j.ijbiomac.2012.05.016

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci, Appl Polym Symp 37:815–827

  • Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353. doi:10.1021/bm101103p

    Article  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi:10.1002/app.30072

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527. doi:10.1016/j.compscitech.2006.12.015

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103. doi:10.1007/s10443-006-9032-9

    Article  Google Scholar 

  • Wang M et al (2011) Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules 12:2074–2081. doi:10.1021/bm101561m

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  • Yu Y, Wu H (2011) Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE J 57:793–800. doi:10.1002/aic.12288

    Article  CAS  Google Scholar 

  • Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofibre film material science. Forum 654–656:1760–1763

    Google Scholar 

  • Zhao HP, Feng XQ, Gao HJ (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett. doi:10.1063/1.2450666

    Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093. doi:10.1016/j.carbpol.2009.10.045

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59. doi:10.1016/j.carbpol.2008.09.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Australian Research Council (under ARC Discovery Grant No. DP0877161). They also acknowledge the Aboriginal collaborator, Dugalunji Aboriginal Corporation in Camooweal for project support, leadership, and the supply of grass. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland and Dr Isabel Marrow for taking images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren J. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiralian, N., Annamalai, P.K., Memmott, P. et al. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22, 2483–2498 (2015). https://doi.org/10.1007/s10570-015-0688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0688-x

Keywords

Navigation