Skip to main content
Log in

Cellulose nanofibers from white and naturally colored cotton fibers

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Suspensions of white and colored nanofibers were obtained by the acid hydrolysis of white and naturally colored cotton fibers. Possible differences among them in morphology and other characteristics were investigated. The original fibers were subjected to chemical analysis (cellulose, lignin and hemicellulose content), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The nanofibers were analyzed with respect to yield, elemental composition (to assess the presence of sulfur), zeta potential, morphology (by scanning transmission electron microscopy (STEM)) and atomic force microscopy (AFM), crystallinity (XRD) and thermal stability by thermogravimetric analysis in air under dynamic and isothermal temperature conditions. Morphological study of several cotton nanofibers showed a length of 85–225 nm and diameter of 6–18 nm. The micrographs also indicated that there were no significant morphological differences among the nanostructures from different cotton fibers. The main differences found were the slightly higher yield, sulfonation effectiveness and thermal stability under dynamic temperature conditions of the white nanofiber. On the other hand, in isothermal conditions at 180 °C, the colored nanofibers showed a better thermal stability than the white.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CW:

White cellulose

CB:

Brown cellulose

CG:

Green cellulose

CR:

Ruby cellulose

CNW:

White nanocellulose

CNB:

Brown nanocellulose

CNG:

Green nanocellulose

CNR:

Ruby nanocellulsoe

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Allen MJ, Hud NV, Balooch M, Tench RJ, Siekhaus WJ, Balhorn R (1992) Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. Ultramicroscopy 42:1095–1100

    Article  Google Scholar 

  • Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    Article  Google Scholar 

  • Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposites materials. 2. Mechanical behavior. Macromolecules 34:2921–2931

    Article  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofibers-reinforced composites. J Reinf Plas Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45:967–979

    Article  CAS  Google Scholar 

  • Carvalho LP, Dos Santos JW (2003) Respostas correlacionadas do algodoeiro com a seleção para a coloração da fibra. Pesq Agropec Bras 38:79–83

    Google Scholar 

  • Chen Y, Sun L, Cui X, Calamari Jr TA, Kimmel LB, Parikh DV (2004) Naturally colored cotton for geocomposites. In: Processing of Beltwide Cotton Conference, p 2750

  • Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627

    Article  CAS  Google Scholar 

  • De Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystal of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330

    CAS  Google Scholar 

  • Dutt Y, Wang XD, Zhu YG, Li YY (2004) Breeding for high yield and fibre quality in coloured cotton. Plant Breed 123:141–151

    Article  Google Scholar 

  • Garcia VJ, Martinez L, Briceno-Valero JM, Schilling CH (1998) Dimensional Metrology of nanometric spherical particles using AFM: II, application of model-tapping mode. Probe Microsc 1:117–125

    Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhesion Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Hua S, Wang X, Yuan S, Shao M, Zhao X, Zhu S, Jiang L (2007) Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci 47:1–7

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37

    Article  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3163

    Article  CAS  Google Scholar 

  • Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Medeiros E, Mattoso LHC, Bernades-Filho R, Wood WJO (2008) Self-assembled films of cellulose nanofibrils and poly (o-ethoxyaniline). Colloid Polym Sci 286:1265–1272

    Article  CAS  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  • Murthy MSS (2001) Never say dye: the story of coloured cotton. Resonance 6:29–35

    Article  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mat Mater Sci Process 80:93–97

    Article  CAS  Google Scholar 

  • Orts WJ, Shey J, Iman SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306

    Article  CAS  Google Scholar 

  • Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Pu YQ, Zhang JG, Elder T, Deng Y, Gatenholm P, Ragauskas AJ (2007) Investigation into nanocellulosics versus acacia reinforced acrylic films. Compos Part B-Eng 38:360–366

    Article  Google Scholar 

  • Rocha MS, Carvalho JMFC, Mata MERMC, Lopes KP (2008) Indução de superbrotamento e regeneração de plantas in vitro, nas cultivares de algodão colorido. R Bras Eng Agric Ambiental 12:503–506

    Google Scholar 

  • Rodgers J, Thibodeaux D, Cui X, Martin V, Watson M, Knowlton J (2008) Instrumental and operational impacts on spectrophotometer color measurements. J Cotton Sci 12:287–297

    Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field source. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Thundat T, Zheng X-Y, Sharp SI, Allison DP, Warmack BJ, Joy DC, Ferrell TL (1992) Calibration of atomic force microscope tips using biomolecules. Scanning Microsc 6:903–910

    CAS  Google Scholar 

  • Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007a) Thermal degradation behavior of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007b) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  Google Scholar 

  • Xiao YH, Zhang Z-S, Yin M-H, Luo M, Li X-B, Hou L, Pei Y (2007) Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun 358:73–78

    Article  CAS  Google Scholar 

  • Zhang JG, Elder TJ, Pu YQ, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611

    Article  CAS  Google Scholar 

  • Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosic. Cellulose 15:489–496

    Article  CAS  Google Scholar 

  • Zhu S-E, Gao P, Sun J-S, Wang H-H, Luo X-M, Jiao M-Y, Wang Z-Y, Xia G-X (2006) Genetic transformation of green-colored cotton. In vitro Cell Dev Biol Plant 42:439–444

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supply of cotton fiber samples by Dr. Odilon R. R. F. Silva and Dr. Luiz P. de Carvalho (Embrapa Algodão, Brazil) and financial support provided by FAPESP (Process No. 07/50863-4), FINEP, CNPq and EMBRAPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliangela de Morais Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Morais Teixeira, E., Corrêa, A.C., Manzoli, A. et al. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17, 595–606 (2010). https://doi.org/10.1007/s10570-010-9403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9403-0

Keywords

Navigation